Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CD40 ligand-stimulated B cell precursor leukemic cells elicit interferon-γ production by autologous bone marrow T cells in childhood acute lymphoblastic leukemia

Abstract

Childhood B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, collected from bone marrow (BM) at diagnosis, were cultured, after thawing, on allogeneic human bone marrow stroma (HBMS) for 48 h in the presence of a soluble trimeric CD40 ligand (stCD40L) molecule. HBMS maintained leukemic cells viability in all tested cases (mean viability 85%). Under these culture conditions we noticed upregulation or de novo expression of costimulatory molecules CD40, CD80 (B7-1) and CD86 (B7-2) in 22/22, 15/23 and 21/23 cases, respectively. Upregulation, in terms of fluorescence intensity, was also observed in the expression of MHC I, MHC II, CD54 (ICAM 1) and CD58 (LFA 3) molecules. HBMS alone, although to a lesser extent, was able to induce modulation of these molecules, but not CD80, in a similar proportion of cases. Neither stCD40L nor HBMS induced modulation of CD10 and CD34 molecules. Moreover, in 4/4 tested cases, stCD40L-stimulated ALL cells were able to induce allogeneic T cells proliferation. To evaluate whether leukemia-reactive T cells were detectable in the BM of ALL patients at diagnosis, stCD40L-stimulated ALL cells were co-cultured with autologous T cells (ratio 1:1), isolated from BM at diagnosis, for 4 days and a 24 h ELISPOT assay was applied to detect the presence of interferon-gamma (IFN-γ)-producing cells. In four of seven cases IFN-γ-producing cells were detected with frequencies of 1/900, 1/1560, 1/2150 and 1/1575 autologous T cells. These data confirm that stCD40L exposure can activate the antigen-presenting cell (APC) capacity of BCP-ALL cells cultured on HBMS and that ELISPOT assay can be used to measure the frequency of leukemia-reactive autologous T cells in the BM of ALL patients even after short-term culture with stCD40L-stimulated ALL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ostrand-Rosenberg S . Tumor immunotherapy: the tumor cell as antigen-presenting cell Curr Opin Immunol 1994 6: 27–34

    Article  Google Scholar 

  2. Dranoff G, Mulligan RC . Gene transfer as cancer therapy Adv Immunol 1995 58: 417–454

    Article  CAS  PubMed  Google Scholar 

  3. Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LM . Follicular lymphomas can be induced to present alloantigen efficently: a conceptual model to improve their tumor immunogenicity Proc Natl Acad Sci USA 1995 92: 8200–8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cardoso AA, Schultze JL, Boussiotis VA, Freeman GJ, Seamon MJ, Laszlo S, Billet A, Sallan SE, Gribben JG, Nadler LM . BCP acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen Blood 1996 88: 41–48

    CAS  PubMed  Google Scholar 

  5. Cardoso AA, Seamon MJ, Hernani MA, Ghia P, Boussiotis VA, Freeman GJ, Gribben JG, Stephen ES, Nadler LM . Ex vivo generation of human anti-BCP leukemia-specific autologous cytolytic T cells Blood 1997 90: 549–561

    CAS  PubMed  Google Scholar 

  6. Cardoso AA, Veiga JP, Ghia P, Hernani MA, Haining WN, Stephen ES, Nadler LM . Adoptive T-cell therapy for B-cell acute lymphoblastic leukemia: preclinical study Blood 1999 94: 3531–3540

    CAS  PubMed  Google Scholar 

  7. Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M, Lemonnier F, Vilmer E, Langlade-Demoyen P . Cytotoxic T cells response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia J Clin Invest 1998 102: 455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee AJ, Haworth C, Hutchinson R, Patel R, Carter R, James RFL . Enhancement of cALL immunogenicity by co-culture with a CD154 expressing 293 cell line Clin Exp Immunol 2001 124: 359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villa S, Colotta F, De Gaetano G, Semeraro N . Arachidonic acid and leukotriene B4 induce aggregation of human peripheral blood mononuclear leukocytes in vitro Br J Haematol 1984 58: 137–146

    Article  CAS  PubMed  Google Scholar 

  10. Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A . IL-10 prevents the differentiation ofmonocytes to dendritic cells but promotes their maturation tomacrophages Eur J Immunol 1998 28: 359–369

    Article  CAS  PubMed  Google Scholar 

  11. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia Blood 1992 79: 2370–2377

    CAS  PubMed  Google Scholar 

  12. Uckun FM, Gajil-Peczalska K, Myers DE, Jaszcz W, Haissig S, Ledbetter JA . Temporal association of CD40 antigen expression with discrete stages of human B-cell ontogeny and the efficacy of anti-CD40 immunotoxins against clonogenic B-lineage acute lymphoblastic leukemia as well as B-lineage non-Hodgkin's lymphoma cells Blood 1990 76: 2449–2456

    CAS  PubMed  Google Scholar 

  13. Law CL, Wörmannn B, LeBien TW . Analysis of expression and function of CD40 on normal and leukemic human B cell precursors Leukemia 1990 4: 732–738

    CAS  PubMed  Google Scholar 

  14. Bradstock K, Bianchi A, Makrynikola V, Filshie R, Gottlieb D . Long-term survival and proliferation of precursor-B acute lymphoblastic leukemia cells on human bone marrow stroma Leukemia 1996 10: 813–820

    CAS  PubMed  Google Scholar 

  15. Saito M, Kumagai Mokazaki T, Nakazawa S, Shapiro LH, Look AT, Campana D . Stromal cell-mediated transcriptional regulation of the CD13/aminopeptidase N gene in leukemic cells Leukemia 1995 9: 1508–1516

    CAS  PubMed  Google Scholar 

  16. Scheibenbogen C, Romero P, Rivoltini R, Herr W, Schmittel A, Cerot Woelfel T, Eggermont AM, Keilholz U . Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial J Immunol Methods 2000 244: 81–89

    Article  CAS  PubMed  Google Scholar 

  17. Lanzavecchia A, Sallusto F . From synapses to immunological memory: the role of sunstained T cells stimulation Curr Opin Immunol 2000 12: 92–98

    Article  CAS  PubMed  Google Scholar 

  18. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA . Phenotypic and functional separation of memory and effector human CD8+ T cells J Exp Med 1997 186: 1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B . Response of naive and memory CD8+T cells to antigen stimulation in vivo Nat Immunol 2000 1: 47–53

    Article  CAS  PubMed  Google Scholar 

  20. Feurer M, Beckhove P, Bai L, Solomayer EF, bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V . Therapy of human tumors in NOD/SCID mice with patient drived reactivated memory T cells from bone marrow Nat Med 2001 7: 452–458

    Article  Google Scholar 

  21. Letsch A, Keilholz U, Schadendorf D, Nagorsen D, Schmittel A, Thiel E, Scheibenbogen C . High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma Int J Cancer 2000 87: 659–664

    Article  CAS  PubMed  Google Scholar 

  22. Khazaie K, Prifti S, Beckhove P, Griesbach A, Russel S, Collins M, Schirrmacher V . Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection Proc Natl Acad Sci USA 1994 91: 7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V, Khazaie K, Eblac Z . Tumor dormancy in in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells Cancer Res 1998 58: 5439–5446

    CAS  PubMed  Google Scholar 

  24. Cardoso AA, Maia S, Nadler LM . Mechanisms facilitating failure of immune surveillance in acute lymphoblastic leukaemia: detection of regulatory suppressive T cells in the bone marrow Blood 2000 96: 464a

    Google Scholar 

  25. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia Blood 2001 96: 2917–2924

    Google Scholar 

  26. Asai T, Storkus WJ, Whiteside TL . Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines Clin Diagn Lab Immunol 2000 7: 145–154

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondazione M Tettamanti and by Associazione Italiana per la Ricerca sul Cancro (AIRC) and by ‘Progetto Oncologia’, Ministero istruzione, Università e ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todisco, E., Gaipa, G., Biagi, E. et al. CD40 ligand-stimulated B cell precursor leukemic cells elicit interferon-γ production by autologous bone marrow T cells in childhood acute lymphoblastic leukemia. Leukemia 16, 2046–2054 (2002). https://doi.org/10.1038/sj.leu.2402672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402672

Keywords

This article is cited by

Search

Quick links