Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

N-(4-hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes

Abstract

The retinoid, N-(4-hydroxyphenyl)retinamide (4-HPR), mediates p53-independent cytotoxicity and can increase reactive oxygen species and ceramide in solid tumor cell lines. We determined changes in ceramide and cytotoxicity upon treatment with 4-HPR (3–12 μM) in six human acute lymphoblastic leukemia (ALL) cell lines: T cell (MOLT-3, MOLT-4, CEM), pre-B-cell (NALM-6, SMS-SB), and null cell (NALL-1). Exposure to 4-HPR (12 μM) for 96 h caused 4.7 (MOLT-3), 3.5 (MOLT-4), 3.9 (CEM), 2.9 (NALM-6), 4.7 (SMS-SB), AND 4.5 (NALL-1) logs of cell kill. The average 4-HPR concentration that killed 99% of cells (LC99) for all six lines was 4.8 μM (range: 1.5–8.9 μM). Treatment with 4-HPR (9 μM) for 24 h resulted in an 8.9 ± 1.0-fold (range: 4.9–15.7-fold) increase of ceramide. Ceramide increase was time- and dose-dependent and abrogated by inhibitors of de novo ceramide synthesis. Concurrent inhibition of ceramide glycosylation/acylation by d,l-threo-(1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol) (PPMP) further increased ceramide levels, and synergistically increased 4-HPR cytotoxicity in four of six ALL cell lines. 4-HPR was minimally cytotoxic to peripheral blood mononuclear cells and a lymphoblastoid cell line, and increased ceramide <2-fold. Thus, 4-HPR was cytotoxic and increased ceramide in ALL cell lines, but not in non-malignant lymphoid cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Acute lymphoblastic leukemia N Engl J Med 1998 339: 605–615

    Article  CAS  PubMed  Google Scholar 

  2. Delia D, Aiello A, Formelli F, Fontanella E, Costa A, Miyashita T, Reed JC, Pierotti MA . Regulation of apoptosis induced by the retinoid N-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2 Blood 1995 85: 359–367

    CAS  PubMed  Google Scholar 

  3. Kalemkerian GP, Slusher R, Ramalingam S, Gadgeel S, Mabry M . Growth inhibition and induction of apoptosis by fenretinide in small-cell lung cancer cell lines J Natl Cancer Inst 1995 87: 1674–1680

    Article  CAS  PubMed  Google Scholar 

  4. Zou C-P, Kurie JM, Lotan D, Zou C-C, Hong WK, Lotan R . Higher potency of N-(4-hydroxyphenyl)retinamide than all-trans-retinoic acid in induction of apoptosis in non-small cell lung cancer cell lines Clin Cancer Res 1998 4: 1345–1355

    CAS  PubMed  Google Scholar 

  5. Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP . Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-Hydroxyphenyl)-retinamide in neuroblastoma cell lines J Natl Cancer Inst 1999 91: 1138–1146

    Article  CAS  PubMed  Google Scholar 

  6. Ponzoni M, Bocca P, Chiesa V, Decensi A, Pistoia V, Raffaghello L, Rozzo C, Montaldo PG . Differential effects of N-(4-hydro-xyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation Cancer Res 1995 55: 853–861

    CAS  PubMed  Google Scholar 

  7. Di Vinci A, Geido E, Infusini E, Giaretti W . Neuroblastomacell apoptosis induced by the synthetic retinoidN-(4-hydroxyphenyl)retinamide Int J Cancer 1994 59: 422–426

    Article  CAS  PubMed  Google Scholar 

  8. Mariotti A, Marcora E, Bunone G, Costa A, Veronesi U, Pierotti MA, Della Valle G . N-(4-hydroxyphenyl)retinamide: a potent inducer of apoptosis in human neuroblastoma cells J Natl Cancer Inst 1994 86: 1245–1247

    Article  CAS  PubMed  Google Scholar 

  9. Ziv Y, Gupta MK, Milsom JW, Vladisavljevic A, Brand M, Fazio VW . The effect of tamoxifen and fenretinimide on human colorectal cancer cell lines in vitro Anticancer Res 1994 14: 2005–2009

    CAS  PubMed  Google Scholar 

  10. Scher RL, Saito W, Dodge RK, Richtsmeier WJ, Fine RL . Fenretinide-induced apoptosis of human head and neck squamous carcinoma cell lines Otolaryngol Head Neck Surg 1998 118: 464–471

    CAS  PubMed  Google Scholar 

  11. Kazmi SM, Plante RK, Visconti V, Lau CY . Comparison ofN-(4-hydroxyphenyl)retinamide and all-trans-retinoic acid in the regulation of retinoid receptor-mediated gene expression in human breast cancer cell lines Cancer Res 1996 56: 1056–1062

    CAS  PubMed  Google Scholar 

  12. Coradini D, Biffi A, Pellizzaro C, Pirronello E, Di Fronzo G . Combined effect of tamoxifen or interferon-β and 4-hydroxyphenylretinamide on the growth of breast cancer cell lines Tumor Biol 1997 18: 22–29

    Article  CAS  Google Scholar 

  13. Hsieh TC, Ng C, Wu JM . The synthetic retinoid N-(4-hydro-xyphenyl)retinamide (4-HPR) exerts antiproliferative and apoptosis-inducing effects in the androgen-independent human prostatic JCA-1 cells Biochem Mol Biol Int 1995 37: 499–506

    CAS  PubMed  Google Scholar 

  14. Igawa M, Tanabe T, Chodak GW, Rukstalis DB . N-(4-hydro-xyphenyl) retinamide induces cell cycle specific growth inhibition in PC3 cells Prostate 1994 24: 299–305

    Article  CAS  PubMed  Google Scholar 

  15. Roberson KM, Penland SN, Padilla GM, Selvan RS, Kim CS, Fine RL, Robertson CN . Fenretinide: induction of apoptosis and endogenous transforming growth factor β in PC-3 prostate cancer cells Cell Growth Differ 1997 8: 101–111

    CAS  PubMed  Google Scholar 

  16. Hsieh TC, Wu JM . Effects of fenretinide (4-HPR) on prostate LNCaP cell growth, apoptosis, and prostate-specific gene expression Prostate 1997 33: 97–104

    Article  CAS  PubMed  Google Scholar 

  17. Supino R, Crosti M, Clerici M, Warlters A, Cleris L, Zunino F, Formelli F . Induction of apoptosis by fenretinide (4HPR) in human ovarian carcinoma cells and its association with retinoic acid receptor expression Int J Cancer 1996 65: 491–497

    Article  CAS  PubMed  Google Scholar 

  18. Sabichi AL, Hendricks DT, Bober MA, Birrer MJ . Retinoic acid receptor beta expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide J Natl Cancer Inst 1998 90: 597–605

    Article  CAS  PubMed  Google Scholar 

  19. Formelli F, Cleris L . Synthetic retinoid fenretinide is effective against a human ovarian carcinoma xenograft and potentiates cisplatin activity Cancer Res 1993 53: 5374–5376

    CAS  PubMed  Google Scholar 

  20. Oridate N, Lotan D, Mitchell MF, Hong WK, Lotan R . Inhibition of proliferation and induction of apoptosis in cervical carcinoma cells by retinoids: implications for chemoprevention J Cell Biochem Suppl 1995 23: 80–86

    Article  CAS  PubMed  Google Scholar 

  21. Oridate N, Suzuki S, Higuchi M, Mitchell MF, Hong WK, Lotan R . Involvement of reactive oxygen species in N-(4-hydro-xyphenyl)retinamide-induced apoptosis in cervical carcinoma cells J Natl Cancer Inst 1997 89: 1191–1198

    Article  CAS  PubMed  Google Scholar 

  22. Delia D, Aiello A, Lombardi L, Pelicci PG, Grignani F, Formelli F, Menard S, Costa A, Veronesi U . N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid Cancer Res 1993 53: 6036–6041

    CAS  PubMed  Google Scholar 

  23. Benedetti L, Grignani F, Scicchitano BM, Jetten AM, Diverio D, Lo Coco F, Avvisati G, Gambacorti Passerini C, Adamo S, Levin AA, Pelicci PG, Nervi C . Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase Blood 1996 87: 1939–1950

    CAS  PubMed  Google Scholar 

  24. Springer LN, Stewart BW . N-(4-hydroxyphenyl)retinamide-induced death in human lymphoblastoid cells: 50 kb DNA breakage as a means of distinguishing apoptosis from necrosis Cancer Lett 1998 128: 189–196

    Article  CAS  PubMed  Google Scholar 

  25. Chan LN, Zhang S, Shao J, Waikel R, Thompson EA, Chan TS . N-(4-hydroxyphenyl)retinamide induced apoptosis in T lymphoma and T lymphoblastoid leukemia cells Leuk Lymphoma 1997 25: 271–280

    Article  CAS  PubMed  Google Scholar 

  26. Abou Issa H, Curley RW Jr, Panigot MJ, Wilcox KA, Webb TE . In vivo use of N-(4-hydroxyphenyl retinamide)-O-glucuronide as a breast cancer chemopreventive agent Anticancer Res 1993 13: 1431–1436

    CAS  PubMed  Google Scholar 

  27. Cobleigh MA, Dowlatshahi K, Deutsch TA, Mehta RG, Moon RC, Minn F, Benson AB, Rademaker AW, Ashenhurst JB, Wade JL . Phase I/II trial of tamoxifen with or without fenretinide, an analog of vitamin A, in women with metastatic breast cancer J Clin Oncol 1993 11: 474–477

    Article  CAS  PubMed  Google Scholar 

  28. Decensi A, Bruno S, Costantini M, Torrisi R, Curotto A, Gatteschi B, Nicolo G, Polizzi A, Perloff M, Malone WF . Phase IIa study of fenretinide in superficial bladder cancer, using DNA flow cytometry as an intermediate end point J Natl Cancer Inst 1994 86: 138–140

    Article  CAS  PubMed  Google Scholar 

  29. Tradati N, Chiesa F, Rossi N, Grigolato R, Formelli F, Costa A, de Palo G . Successful topical treatment of oral lichen planus and leukoplakias with fenretinide (4-HPR) Cancer Lett 1994 76: 109–111

    Article  CAS  PubMed  Google Scholar 

  30. Costa A, Formelli F, Chiesa F, Decensi A, de Palo G, Veronesi U . Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide Cancer Res 1994 54: 2032–2037

    Google Scholar 

  31. Chiesa F, Tradati N, Marazza M, Rossi N, Boracchi P, Mariani L, Formelli F, Giardini R, Costa A, de Palo G . Fenretinide (4-HPR) in chemoprevention of oral leukoplakia J Cell Biochem Suppl 1993 17F: 255–261

    Article  CAS  PubMed  Google Scholar 

  32. Kelloff GJ, Crowell JA, Boone CW, Steele VE, Lubet RA, Greenwald P, Alberts DS, Covey JM, Doody LA, Knapp GG . Clinical development plan: N-(4-hydroxyphenyl)retinamide J Cell Biochem Suppl 1994 20: 176–196

    CAS  PubMed  Google Scholar 

  33. Delia D, Aiello A, Meroni L, Nicolini M, Reed JC, Pierotti MA . Role of antioxidants and intracellular free radicals in retinamide-induced cell death Carcinogenesis 1997 18: 943–948

    Article  CAS  PubMed  Google Scholar 

  34. Maurer BJ, Melton L, Billups C, Cabot MC, Reynolds CP . Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydro-xyphenyl)retinamide and modulators of ceramide metabolism J Natl Cancer Inst 2000 92: 1897–1909

    Article  CAS  PubMed  Google Scholar 

  35. Dipietrantonio A, Hsieh T-C, Olson SC, Wu JM . Regulation of G1/S transition and induction of apoptosis in HL-60 leukemia cells by fenretinide (4HPR) Int J Cancer 1998 78: 53–61

    Article  CAS  PubMed  Google Scholar 

  36. Dbaibo GS, Perry DK, Gamard CJ, Platt R, Poirier GG, Obeid LM, Hannun YA . Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway J Exp Med 1997 185: 481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cuvillier O, Rosenthal DS, Smulson ME, Spiegel S . Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes J Biol Chem 1998 273: 2910–2916

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC . Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione J Biol Chem 1997 272: 11369–11377

    Article  CAS  PubMed  Google Scholar 

  39. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G . Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis J Biol Chem 1997 272: 21388–21395

    Article  CAS  PubMed  Google Scholar 

  40. Mathias S, Pena LA, Kolesnick RN . Signal transduction of stress via ceramide Biochem J 1998 335: 465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosporylation via a mechanism involving mitochondrial PP2A J Biol Chem 1999 274: 20296–20300

    Article  CAS  PubMed  Google Scholar 

  42. Kolesnick RN, Kronke M . Regulation of ceramide production and apoptosis (review) Annu Rev Physiol 1998 60: 643–665

    Article  CAS  PubMed  Google Scholar 

  43. Shayman JA, Abe A . Glucosylceramide synthase: assay and properties Methods Enzymol 2000 311: 42–49

    Article  CAS  PubMed  Google Scholar 

  44. Abe A, Shayman JA . Purification and characterization of 1-O-acylceramide synthase, a novel phospholipase A2 with transacylase activity J Biol Chem 1998 273: 8467–8474

    Article  CAS  PubMed  Google Scholar 

  45. Shayman JA, Lee L, Abe A, Shu L . Inhibitors of glucosylceramide synthase Methods Enzymol 2000 311: 373–387

    Article  CAS  PubMed  Google Scholar 

  46. Lee L, Abe A, Shayman JA . Improved inhibitors of glucosylceramide synthase J Biol Chem 1999 274: 14662–14669

    Article  CAS  PubMed  Google Scholar 

  47. Cattan AR, Douglas E . The C.B.17 scid mouse strain as a model for human disseminated leukaemia and myeloma in vivo Leuk Res 1994 18: 513–522

    Article  CAS  PubMed  Google Scholar 

  48. Schachtschabel DO, Lazarus H, Farber S, Foley GE . Sensitivity of cultured human lymphoblasts (CCRF-CEM cells) to inhibition by thymidine Exp Cell Res 1966 43: 512–514

    Article  CAS  PubMed  Google Scholar 

  49. LeBien T, Kersey J, Nakazawa S, Minato K, Minowada J . Analysis of human leukemia/lymphoma cell lines with monoclonal antibodies BA-1, BA-2 and BA-3 Leuk Res 1982 6: 299–305

    Article  CAS  PubMed  Google Scholar 

  50. Greaves M, Janossy G . Patterns of gene expression and the cellular origins of human leukaemias Biochim Biophys Acta 1978 516: 193–230

    CAS  PubMed  Google Scholar 

  51. Smith RG, Dev VG, Shannon WAJ . Characterization of a novel human pre-B leukemia cell line J Immunol 1981 126: 596–602

    CAS  PubMed  Google Scholar 

  52. Hiraki S, Miyoshi I, Kubonishi I, Matsuda Y, Nakayama T, Kishimoto H, Masuji H . Human leukemic ‘null’ cell line (NALL-1) Cancer 1977 40: 2131–2135

    Article  CAS  PubMed  Google Scholar 

  53. Minowada J, Onuma T, Moore GE . Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes J Natl Cancer Inst 1972 49: 891–895

    CAS  PubMed  Google Scholar 

  54. Chow VT, Quek HH, Tock EP . Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line Cancer Lett 1993 73: 141–148

    Article  CAS  PubMed  Google Scholar 

  55. Reynolds CP, Reynolds DA, Frenkel EP, Smith RG . Selective toxicity of 6-hydroxydopamine and ascorbate for human neuroblastoma in vitro: a model for clearing marrow prior to autologous transplant Cancer Res 1982 42: 1331–1336

    CAS  PubMed  Google Scholar 

  56. Fragala T, Proffitt RT, Reynolds CP . A novel 96-well plate cytotoxicity assay based on fluorescence digital imaging microscopy Proc Amer Assoc Cancer Res 1995 36: 303

    Google Scholar 

  57. Keshelava N, Seeger RC, Groshen S, Reynolds CP . Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy Cancer Res 1998 58: 5396–5405

    CAS  PubMed  Google Scholar 

  58. Krishan A . Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining J Cell Biol 1975 66: 188–193

    Article  CAS  PubMed  Google Scholar 

  59. Lavie Y, Cao H-T, Bursten SL, Giuliano AE, Cabot MC . Accumulation of glucosylceramide in multidug-resistant cancer cells J Biol Chem 1996 271: 19530–19536

    Article  CAS  PubMed  Google Scholar 

  60. Lavie Y, Cao H, Volner A, Lucci A, Han T-Y, Geffen V, Giuliano AE, Cabot MC . Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells J Biol Chem 1997 272: 1682–1687

    Article  CAS  PubMed  Google Scholar 

  61. Wang E, Merrill AH Jr . Ceramide Synthase Methods Enzymol 2000 311: 15–21

    Article  CAS  PubMed  Google Scholar 

  62. Dickson RC, Lester RL, Nagiec MM . Serine Palmitoyltransferase Methods Enzymol 2000 311: 3–9

    Article  CAS  PubMed  Google Scholar 

  63. Chou T-C . Drug combinations: From laboratory to practice J Lab Clin Med 1998 131: 6–8

    Article  Google Scholar 

  64. Bagniewski PG, Reid JM, Villablanca JG, Reynolds CP, Ames MM . A phase I pharmacokinetic study of fenretinide (HPR) in children with high-risk tumors Proc Amer Assoc Cancer Res 1999 40: 92

    Google Scholar 

  65. Parchment RE, Jasti BR, Koracek TA, Wiegand RA, Kassab J, Wurster W, Keyes KA, Grieshaber CK, LoRusso PM . Pharmacologic issues for fenretinide chemotherapy (4-HPR, NSC-374551). Proceedings of the 1999 AACR-NCI-EORTC International Conference Clin Cancer Res Suppl 1999 5: 3729–3897 No. 350

    Google Scholar 

  66. Merrill AH Jr, Wang E . Enzymes of ceramide biosynthesis Methods Enzymol 1992 209: 427–437

    Article  CAS  PubMed  Google Scholar 

  67. Tamiya-Koizumi K, Murate T, Suzuki M, Simbulan CM, Nakagawa M, Takemura M, Furuta K, Izuta S, Yoshida S . Inhibition of DNA primase by sphingosine and its analogues parallels with their growth suppression of cultured human leukemic cells Biochem Mol Biol Int 1997 41: 1179–1189

    CAS  PubMed  Google Scholar 

  68. Klostergaard J, Auzenne E, Leroux E . Characterization of cytotoxicity induced by sphingolipids in multidrug-resistant leukemia cells Leuk Res 1998 22: 1049–1056

    Article  CAS  PubMed  Google Scholar 

  69. Auzenne E, Leroux ME, Hu M, Pollock RE, Feig B, Klostergaard J . Cytotoxic effects of sphingolipids as single or multi-modality agents on human melanoma and soft tissue sarcoma in vitro Melanoma Res 1998 8: 227–239

    Article  CAS  PubMed  Google Scholar 

  70. Jarvis WD, Fornari FA Jr, Auer KL, Freemerman AJ, Szabo E, Birrer MJ, Johnson CR, Barbour SE, Dent P, Grant S . Coordinate regulation of stress- and mitogen-actived protein kinases in the apoptotic actions of ceramide and sphingosine Mol Pharmacol 1997 52: 935–947

    Article  CAS  PubMed  Google Scholar 

  71. Jarvis WD, Fornari FA, Traylor RS, Martin HA, Kramer LB, Erukulla RK, Bittman R, Grant S . Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells J Biol Chem 1996 271: 8275–8284

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y-Y, Han T-Y, Giuliano AE, Cabot MC . Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells J Biol Chem 1999 274: 1140–1146

    Article  CAS  PubMed  Google Scholar 

  73. Tepper AD, Diks SH, van Blitterswijk WJ, Borst J . Glucosylceramide synthase does not attenuate the ceramide pool accumulating during apoptosis induced by CD95 or anti-cancer regimens J Biol Chem 2000 275: 34810–34817

    Article  CAS  PubMed  Google Scholar 

  74. Wang H, Maurer BJ, Reynolds CP, Cabot MC . N-(4-hydro-xyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase Cancer Res 2001 61: 5102–5105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by grants from the Neil Bogart Memorial Laboratories of the TJ Martell Foundation for Leukemia, Cancer and AIDS Research (BM, CR); The Wright Foundation (BM); The Stop Cancer Foundation (BM); The Colvin Leukemia Fund (BM); The Cusumano Leukemia Fund of the Michael Hoefflin Foundation (BM), by Public Health Service grant CA81403 (CR) from the National Cancer Institute (NCI), National Institutes of Health, Department of Health and Human Services; and a Howard Hughes Medical Institute Medical Student Research Training Fellowship (PO).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Donnell, P., Guo, WX., Reynolds, C. et al. N-(4-hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes. Leukemia 16, 902–910 (2002). https://doi.org/10.1038/sj.leu.2402485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402485

Keywords

This article is cited by

Search

Quick links