Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Expression of a mutated form of the p85α regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO)

Abstract

Phosphatidylinositol (PI) 3-kinase plays an important role in a variety of biological processes, including proliferation and apoptosis. PI3-kinase is a heterodimer consisting of an 85 kDa adapter protein (p85) containing one SH3 domain and two SH2 domains and a 110 kDa catalytic subunit (p110). Recently an oncogenic form of p85 named p65-PI3K lacking the C-terminal SH2 domain has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65-PI3K in T lymphocytes develop a lymphoproliferative disorder. Here we describe the cloning of a C-terminal truncated form of p85 expressed in a human lymphoma cell line (CO) with a T cell phenotype derived from a patient with Hodgkin's disease. As a result of a frame-shift mutation at amino acid 636, p76 is lacking most of the C-terminal SH2 domain, but contains the inter-SH2 domain and is associated with an active form of PI3-kinase. A PI3-kinase-dependent constitutive activation of Akt was detected in CO cells which was only partially reduced after serum starvation. Treatment of CO cells with the PI3-kinase inhibitor wortmannin resulted in a concentration-dependent inhibition of cell proliferation associated with an increased number of apoptotic cells. This is the first detection of a mutated form of the p85 subunit of PI3-kinase in human hematopoietic cells further underlining a potential role of PI3-kinase/Akt signaling in human leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Küppers R, Rajewsky K . The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease Annu Rev Immunol 1998 16: 471–493

    Article  Google Scholar 

  2. Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H . Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed–Sternberg cells of classic Hodgkin disease Blood 2000 95: 3020–3024

    CAS  PubMed  Google Scholar 

  3. Herbst H, Dallenbach F, Hummel M, Niedobitek G, Pileri S, Muller-Lantzsch N, Stein H . Epstein–Barr virus latent membrane protein expression in Hodgkin and Reed–Sternberg cells Proc Natl Acad Sci USA 1991 88: 4766–4770

    Article  CAS  Google Scholar 

  4. Jücker M, Abts H, Li W, Schindler R, Merz H, Günther A, von Kalle C, Schaadt M, Diamantstein T, Feller AC, Krueger GRF, Diehl V, Blankenstein T, Tesch H . Expression of interleukin-6 and interleukin-6 receptor in Hodgkin's disease Blood 1991 77: 2413–2418

    PubMed  Google Scholar 

  5. Herbst H, Samol J, Foss HD, Raff T, Niedobitek G . Modulation of interleukin-6 expression in Hodgkin and Reed–Sternberg cells by Epstein–Barr virus J Pathol 1997 182: 299–306

    Article  CAS  Google Scholar 

  6. Jücker M, Schaadt M, Diehl V, Poppema S, Jones D, Tesch H . Heterogeneous expression of proto-oncogenes in Hodgkin's disease derived cell lines Hematol Oncol 1990 8: 191–204

    Article  Google Scholar 

  7. Jücker M, Roebroek AJM, Mautner J, Koch K, Eick D, Diehl V, Van de Ven WJM, Tesch H . Expression of truncated transcripts of the proto-oncogene c-fps/fes in human lymphoma and lymphoid leukemia cell lines Oncogene 1992 7: 943–952

    PubMed  Google Scholar 

  8. Trümper LH, Brady G, Bagg A, Gray D, Loke SL, Griesser H, Wagmann R, Braziel R, Gascoyne RD, Vicini S, Iscove NN, Cossman J, Mak TW . Single cell analysis of Hodgkin and Reed–Sternberg cells: molecular heterogeneity of gene expression and p53 mutations Blood 1993 81: 3097–3115

    PubMed  Google Scholar 

  9. Kapeller R, Cantley LC . Phosphatidylinositol 3-kinase BioEssays 1994 16: 565–576

    Article  CAS  Google Scholar 

  10. Panayotou G, Waterfield MD . Phosphatidylinositol 3-kinase a key enzyme in diverse signaling pathways Trends Cell Biol 1992 2: 358–360

    Article  CAS  Google Scholar 

  11. Stephens LR, Jackson TR, Hawkins PT . Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signaling system? Biochem Biophys Acta 1993 1179: 27–75

    Article  CAS  Google Scholar 

  12. Scharenberg AM, El-Hillal O, Fruman DA, Beitz LO, Li Z, Lin S, Gout I, Cantley LC, Rawlings DJ, Kinet JP . Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals EMBO J 1998 17: 1961–1972

    Article  CAS  Google Scholar 

  13. Klippel A, Kavanaugh WM, Pot D, Williams LT . A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase akt through its pleckstrin homology domain Mol Cell Biol 1997 17: 338–344

    Article  CAS  Google Scholar 

  14. Scheid MP, Lauener RW, Duronio V . Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signaling between interleukin-3 and granulocyte-macrophage colony stimulating factor Biochem J 1995 312: 159–162

    Article  CAS  Google Scholar 

  15. Kulik G, Klippel A, Weber MJ . Antiapoptotic signaling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt Mol Cell Biol 1997 17: 1595–1606

    Article  CAS  Google Scholar 

  16. Häusler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G . Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B Eur J Immunol 1998 28: 57–69

    Article  Google Scholar 

  17. Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK . Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase Science 1997 276: 1848–1850

    Article  CAS  Google Scholar 

  18. Bellacosa A, Testa JR, Staal SP, Tsichlis PN . A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region Science 1991 254: 274–277

    Article  CAS  Google Scholar 

  19. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B . Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway EMBO J 1997 16: 6151–6161

    Article  CAS  Google Scholar 

  20. Fukui Y, Hanafusa H . Phosphatidylinositol kinase activity associates with viral src protein Mol Cell Biol 1989 9: 1651–1658

    Article  CAS  Google Scholar 

  21. Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC . Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants Mol Cell Biol 1991 11: 1107–1113

    Article  CAS  Google Scholar 

  22. Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT . cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor Cell 1991 65: 75–82

    Article  CAS  Google Scholar 

  23. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, Smith AD, Morgan SJ, Courtneidge AA, Parker PJ, Waterfield MD . Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase Cell 1991 65: 91–104

    Article  CAS  Google Scholar 

  24. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J . Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases Cell 1991 65: 83–90

    Article  CAS  Google Scholar 

  25. Klippel A, Escobedo JA, Hu Q, Williams LT . A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo Mol Cell Biol 1993 13: 5560–5566

    Article  CAS  Google Scholar 

  26. Antonetti DA, Algenstaedt P, Kahn CR . Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain Mol Cell Biol 1996 16: 2195–2203

    Article  CAS  Google Scholar 

  27. Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL, Myers MG, Sun XJ, Morris MF . The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase Mol Cell Biol 1995 15: 4453–4465

    Article  CAS  Google Scholar 

  28. Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J . Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors Mol Cell Biol 1992 12: 981–990

    Article  CAS  Google Scholar 

  29. McGlade CJ, Ellis C, Reedijk M, Anderson D, Mbamalu G, Reith AD, Panayotou G, End P, Bernstein A, Kazlauskas A, Waterfield MD, Pawson T . SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors Mol Cell Biol 1992 12: 991–997

    Article  CAS  Google Scholar 

  30. Pleiman CM, Hertz WM, Cambier JC . Activation of phosphatidylinositol-3′kinase by src family kinase SH3 binding to the p85 subunit Science 1994 263: 1609–1612

    Article  CAS  Google Scholar 

  31. Jiminez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennstöm S, von Kobbe C, Toran JL, Borlado LR, Calvo V, Copin SG, Albar JP, Gaspar ML, Diez E, Marcos MAR, Downward J, Martinez C, Merida I, Carrera AC . Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase EMBO J 1988 17: 743–753

    Article  Google Scholar 

  32. Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J, Marcos MAR, Martinez C, Balomenos D, Carrera AC . Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo FASEB J 2000 14: 895–903

    Article  CAS  Google Scholar 

  33. Schaadt M, Diehl V, Stein H, Fonatsch C, Kirchner H . Two neoplastic cell lines with unique features derived from Hodgkin's disease Int J Cancer 1980 26: 723–731

    Article  CAS  Google Scholar 

  34. Diehl V, Kirchner HH, Schaadt M, Fonatsch C, Stein H, Gerdes J, Boie C . Hodgkin's disease: establishment and characterization of four in vitro cell lines J Cancer Res Clin Oncol 1981 101: 111–124

    Article  CAS  Google Scholar 

  35. Diehl V, Kirchner HH, Burrichter H, Stein H, Fonatsch C, Gerdes J, Schaadt M, Heit W, Uchanska-Ziegler B, Ziegler A, Heintz F, Sueno K . Characteristics of Hodgkin's disease-derived cell lines Cancer Treat Rep 1982 66: 615–632

    CAS  PubMed  Google Scholar 

  36. Jones DB, Scott CS, Wright DH, Stein H, Beverley PC, Payne SV, Crawford DH . Phenotypic analysis of an established cell line derived from a patient with Hodgkin's disease (HD) Hematol Oncol 1985 3: 133–145

    Article  CAS  Google Scholar 

  37. Poppema S, De Jong B, Atmosoerodjo J, Idenburg V, Visser L, De Ley L . Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived from Hodgkin's disease. Evidence for a B-cell origin of Sternberg–Reed cells Cancer 1985 55: 683–690

    Article  CAS  Google Scholar 

  38. Kamesaki H, Fukuhara S, Tatsumi E, Uchino H, Yamabe H, Miwa H, Shirakawa S, Hatanaka M, Honjo T . Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease Blood 1986 68: 285–292

    CAS  PubMed  Google Scholar 

  39. Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J . Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles Leuk Res 1986 10: 487–500

    Article  CAS  Google Scholar 

  40. Woscholski R, Kodaki T, McKinnon M, Waterfield MD, Parker PJ . A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase FEBS Lett 1994 342: 109–114

    Article  CAS  Google Scholar 

  41. Sanger F . Determination of nucleotide sequences in DNA Science 1981 214: 1205–1210

    Article  CAS  Google Scholar 

  42. Horn S, Meyer J, Heukeshoven J, Fehse B, Schulze C, Li S, Frey J, Poll S, Stocking C, Jücker M . The Inositol 5-phosphatase SHIP is expressed as 145 and 135 kD proteins in blood and bone marrow cells in vivo, whereas carboxyl-truncated forms of SHIP are generated by proteolytic cleavage in vitro Leukemia 2001 15: 112–120

    Article  CAS  Google Scholar 

  43. Jücker M, Schiffer CA, Feldman RA . A tyrosine-phosphorylated protein of 140 kD is constitutively associated with the phosphotyrosine binding domain of Shc and the SH3 domains of Grb2 in acute myeloid leukemia cells Blood 1997 89: 2024–2035

    PubMed  Google Scholar 

  44. Areces LB, Jücker M, San Miguel JA, Mui A, Miyajima A, Feldman RA . Ligand-dependent transformation by the receptor for human granulocyte/macrophage colony-stimulating factor and tyrosine phosphorylation of the receptor beta subunit Proc Natl Acad Sci USA 1993 90: 3963–3967

    Article  CAS  Google Scholar 

  45. Jücker M, Feldman RA . Identification of a new adaptor protein that may link the common β subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase J Biol Chem 1995 270: 27817–27822

    Article  Google Scholar 

  46. Fruman DA, Cantley LC, Caroenter CL . Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85α gene Genomics 1996 37: 113–121

    Article  CAS  Google Scholar 

  47. Hu P, Mondino A, Skolnik EY, Schlessinger J . Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85 Mol Cell Biol 1993 13: 7677–7688

    Article  CAS  Google Scholar 

  48. Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G, Fry MJ, Yonezawa K, Kasuga M, Waterfield MD . PI 3-kinase: structureal and functional analysis of intersubunit interactions EMBO J 1994 13: 511–522

    Article  CAS  Google Scholar 

  49. Franke TF, Kaplan TR, Cantley LC . PI3K: downstream AKTion blocks apoptosis Cell 1997 88: 435–437

    Article  CAS  Google Scholar 

  50. Scheid PS, Duronio V . Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/Akt: Involvement of MEK upstream of Bad phosphorylation Proc Natl Acad Sci USA 1998 95: 7439–7444

    Article  CAS  Google Scholar 

  51. Chan TO, Rittenhouse SE, Tsichlis PN . Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation Annu Rev Biochem 1999 68: 965–1014

    Article  CAS  Google Scholar 

  52. Hill MM, Andjelkovic M, Brazil DP, Ferrari S, Fabbro D, Hemming BA . Insulin-stimulated protein kinase B phosphorylation ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase J Biol Chem 2001 28: 25643–25646

    Article  Google Scholar 

  53. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, Resh MD, Rios CB, Silverman L, Kuriyan J . Crystal structure of the phosphotyrosine recogniton domain SH2 of v-src complexed with tyrosine-phosphorylated peptides Nature 1992 358: 646–653

    Article  CAS  Google Scholar 

  54. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D . Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo Mol Cell Biol 1992 12: 609–618

    Article  CAS  Google Scholar 

  55. Siegal G, Davis B, Kristensen SM, Sankar A, Linacre J, Stein RC, Panayotou G, Waterfield MD, Discoll PC . Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase J Mol Biol 1998 276: 461–478

    Article  CAS  Google Scholar 

  56. Klein S, Jones DB, Tesch H . In vitro differentiation of a Hodgkin's disease derived cell line Hematol Oncol 1992 10: 195–205

    Article  CAS  Google Scholar 

  57. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky A, Lechleider R, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley L . SH2 domains recognize specific phosphopeptide sequences Cell 1993 72: 767–778

    Article  CAS  Google Scholar 

  58. Ponzetto C, Bardelli A, Maina F, Longati P, Panayotou G, Dhand R, Waterfield MD, Comoglio PM . A novel recogniton motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor Mol Cell Biol 1993 13: 4600–4608

    Article  CAS  Google Scholar 

  59. Klippel A, Escobedo JA, Fantl WJ, Williams LT . The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor β receptor Mol Cell Biol 1992 12: 1451–1459

    Article  CAS  Google Scholar 

  60. Kavanaugh WM, Klippel A, Escobedo JA, Williams LT . Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor-stimulated cells Mol Cell Biol 1992 12: 3415–3424

    Article  CAS  Google Scholar 

  61. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM . Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit Mol Cell Biol 1998 18: 1379–1387

    Article  CAS  Google Scholar 

  62. Yu J, Wjasow C, Backer JM . Regulation of the p85/p110alpha phosphatidylinositol 3′-kinase J Biol Chem 1998 273: 30199–30203

    Article  CAS  Google Scholar 

  63. Daduang S, Nagata S, Matsuda M, Yamori T, Onodera K, Fukui Y . Production of monoclonal antibodies specific to the carboxyl terminal region of the 85 kDa subunit of phosphatidylinositol 3-kinase: use of the antibodies in recogniton of mutant p85 Immunol Cell Biol 1995 73: 134–139

    Article  CAS  Google Scholar 

  64. Mitelman F . Chromosome 5. In: Johansson B, Mertens F (eds) Catalog of Chromosome Aberrations in Cancer, 5th edn Wiley-Liss: New York, NY 1994 681–704

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (CA55293) and the National Leukemia Association to RAF and by a grant from the Deutsche Forschungsgemeinschaft (JU255/2–1) to MJ. We are grateful to Margaret A Tate and Sigrid Poll for excellent technical assistance. We also thank Drs H Tesch, V Diehl, DB Jones, S Poppema, H Kamesaki, HG Drexler and A Guse for generously providing cell lines.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jücker, M., Südel, K., Horn, S. et al. Expression of a mutated form of the p85α regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16, 894–901 (2002). https://doi.org/10.1038/sj.leu.2402484

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402484

Keywords

This article is cited by

Search

Quick links