Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR

Abstract

Immunoglobulin gene rearrangements are used as PCR targets for detection of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL). We investigated the occurrence of monoclonal immunoglobulin kappa-deleting element (IGK-Kde) rearrangements by Southern blotting and PCR/heteroduplex analysis at diagnosis, their stability at relapse, and their applicability in real-time quantitative PCR (RQ-PCR) analysis. In 77 selected children with precursor-B-ALL, Southern blotting detected 122 IGK-Kde rearrangements, 12 of which were derived from subclones in six patients (8%). PCR/heteroduplex analysis with BIOMED-1 Concerted Action primers identified 100 of the 110 major IGK-Kde rearrangements (91%). Comparison between diagnosis and relapse samples from 21 patients with PCR-detectable IGK-Kde rearrangements (using Southern blotting, PCR/heteroduplex analysis, and sequencing) demonstrated that 27 of the 32 rearrangements remained stable at relapse. When patients with oligoclonal IGK-Kde rearrangements were excluded, 25 of the 27 rearrangements remained stable at relapse and at least one stable rearrangement was present in 17 of the 18 patients. Subsequently, RQ-PCR analysis with allele-specific forward primers, a germline Kde TaqMan-probe, and a germline Kde reverse primer was evaluated for 18 IGK-Kde rearrangements. In 16 of the 18 targets (89%) a sensitivity of 10−4 was reached. Analysis of MRD during follow-up of eight patients with IGK-Kde rearrangements showed comparable results between RQ-PCR data and classical dot-blot data. We conclude that the frequently occurring IGK-Kde rearrangements are generally detectable by PCR (90%) and are highly stable MRD-PCR targets, particularly where monoclonal rearrangements at diagnosis (95%) are concerned. Furthermore, most IGK-Kde rearrangements (90%) can be used for sensitive detection of MRD (10−4) by RQ-PCR analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E . Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group N Engl J Med 1998 339: 591–598

    Article  CAS  Google Scholar 

  2. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  Google Scholar 

  3. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, Sandlund JT, Rivera GK, Rubnitz JE, Ribeiro RC, Pui CH, Campana D . Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia Blood 2000 96: 2691–2696

    CAS  PubMed  Google Scholar 

  4. Beishuizen A, Hahlen K, Hagemeijer A, Verhoeven MA, Hooijkaas H, Adriaansen HJ, Wolvers-Tettero IL, van Wering ER, van Dongen JJ . Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B cell origin Leukemia 1991 5: 657–667

    CAS  PubMed  Google Scholar 

  5. Potter MN, Steward CG, Maitland N, Oakhill A . Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukaemia of precursor B cell origin Leukemia 1992 6: 354–355

    CAS  PubMed  Google Scholar 

  6. Langlands K, Craig JI, Anthony RS, Parker AC . Clonal selection in acute lymphoblastic leukaemia demonstrated by polymerase chain reaction analysis of immunoglobulin heavy chain and T cell receptor delta chain rearrangements Leukemia 1993 7: 1066–1070

    CAS  PubMed  Google Scholar 

  7. Beishuizen A, Verhoeven MA, van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ . Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis Blood 1994 83: 2238–2247

    CAS  PubMed  Google Scholar 

  8. Kitchingman GR, Mirro J, Stass S, Rovigatti U, Melvin SL, Williams DL, Raimondi SC, Murphy SB . Biologic and prognostic significance of the presence of more than two mu heavy-chain genes in childhood acute lymphoblastic leukemia of B precursor cell origin Blood 1986 67: 698–703

    CAS  PubMed  Google Scholar 

  9. Szczepanski T, Beishuizen A, Pongers-Willemse MJ, Hahlen K, Van Wering ER, Wijkhuijs AJ, Tibbe GJ, De Bruijn MA, Van Dongen JJ . Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease Leukemia 1999 13: 196–205

    Article  CAS  Google Scholar 

  10. Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR . Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse Leukemia 1992 6: 282–288

    CAS  PubMed  Google Scholar 

  11. Steward CG, Goulden NJ, Katz F, Baines D, Martin PG, Langlands K, Potter MN, Chessells JM, Oakhill A . A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia Blood 1994 83: 1355–1362

    CAS  PubMed  Google Scholar 

  12. Marshall GM, Kwan E, Haber M, Brisco MJ, Sykes PJ, Morley AA, Toogood I, Waters K, Tauro G, Ekert H et al. Characterization of clonal immunoglobulin heavy chain and T cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia Leukemia 1995 9: 1847–1850

    CAS  PubMed  Google Scholar 

  13. Steenbergen EJ, Verhagen OJ, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR, von dem Borne AE, van der Schoot CE . Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia Leukemia 1997 11: 1258–1265

    Article  CAS  Google Scholar 

  14. Yokota S, Hansen-Hagge TE, Bartram CR . T-cell receptor delta gene recombination in common acute lymphoblastic leukemia: preferential usage of V delta 2 and frequent involvement of the J alpha cluster Blood 1991 77: 141–148

    CAS  PubMed  Google Scholar 

  15. Hansen-Hagge TE, Yokota S, Reuter HJ, Schwarz K, Bartram CR . Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway Blood 1992 80: 2353–2362

    CAS  PubMed  Google Scholar 

  16. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, van den Berg H, von dem Borne AE, van der Schoot CE . Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease Blood 1995 86: 692–702

    CAS  PubMed  Google Scholar 

  17. Tumkaya T, van der Burg M, Garcia Sanz R, Gonzalez Diaz M, Langerak AW, San Miguel JF, van Dongen JJ . Immunoglobulin lambda isotype gene rearrangements in B cell malignancies Leukemia 2001 15: 121–127

    Article  CAS  Google Scholar 

  18. Beishuizen A, Verhoeven MA, Mol EJ, van Dongen JJ . Detection of immunoglobulin kappa light-chain gene rearrangement patterns by Southern blot analysis Leukemia 1994 8: 2228–2236

    CAS  PubMed  Google Scholar 

  19. Siminovitch KA, Bakhshi A, Goldman P, Korsmeyer SJ . A uniform deleting element mediates the loss of kappa genes in human B cells Nature 1985 316: 260–262

    Article  CAS  Google Scholar 

  20. Beishuizen A, de Bruijn MA, Pongers-Willemse MJ, Verhoeven MA, van Wering ER, Hahlen K, Breit TM, de Bruin-Versteeg S, Hooijkaas H, van Dongen JJ . Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease Leukemia 1997 11: 2200–2207

    Article  CAS  Google Scholar 

  21. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ . Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes Leukemia 1998 12: 2006–2014

    Article  CAS  Google Scholar 

  22. Verhagen O, Willemse M, Breunis W, Wijkhuis A, Jacobs D, Joosten S, van Wering E, van Dongen J, van der Schoot C . Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia Leukemia 2000 14: 1426–1435

    Article  CAS  Google Scholar 

  23. Brüggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N, Scheuering U, Kneba M . Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR Leukemia 2000 14: 1419–1425

    Article  Google Scholar 

  24. Pallisgaard N, Clausen N, Schroder H, Hokland P . Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript Genes Chromosomes Cancer 1999 26: 355–365

    Article  CAS  Google Scholar 

  25. Ballerini P, Landman Parker J, Laurendeau I, Olivi M, Vidaud M, Adam M, Leverger G, Gerota I, Cayre YE, Bieche I . Quantitative analysis of TEL/AML1 fusion transcripts by real-time RT-PCR assay in childhood acute lymphoblastic leukemia Leukemia 2000 14: 1526–1528

    Article  CAS  Google Scholar 

  26. van Dongen JJ, Wolvers-Tettero IL . Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects Clin Chim Acta 1991 198: 1–91

    Article  CAS  Google Scholar 

  27. Verhagen OJ, Wijkhuijs AJ, van der Sluijs-Gelling AJ, Szczepanski T, van der Linden-Schrever BE, Pongers-Willemse MJ, van Wering ER, van Dongen JJ, van der Schoot CE . Suitable DNA isolation method for the detection of minimal residual disease by PCR techniques Leukemia 1999 13: 1298–1299

    Article  CAS  Google Scholar 

  28. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ . Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 110–118

    Article  CAS  Google Scholar 

  29. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero IL, van Dongen JJ . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations Leukemia 1997 11: 2192–2199

    Article  CAS  Google Scholar 

  30. Szczepanski T, Willemse MJ, Kamps WA, van Wering ER, Langerak AW, van Dongen JJ . Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy Med Pediatr Oncol 2001 36: 352–358

    Article  CAS  Google Scholar 

  31. Stolz F, Panzer S, Panzer-Grumayer ER . Multiplex PCR reaction for the detection and identification of immunoglobulin kappa deleting element rearrangements in B-lineage leukaemias Br J Haematol 1999 106: 486–490

    Article  CAS  Google Scholar 

  32. Seriu T, Hansen-Hagge TE, Stark Y, Bartram CR . Immunoglobulin kappa gene rearrangements between the kappa deleting element and Jkappa recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis Leukemia 2000 14: 671–674

    Article  CAS  Google Scholar 

  33. van der Burg M, Tumkaya T, Boerma M, de Bruin-Versteeg S, Langerak AW, van Dongen JJ . Ordered recombination of immunoglobulin light chain genes occurs at the IGK locus but seems less strict at the IGL locus Blood 2001 97: 1001–1008

    Article  CAS  Google Scholar 

  34. Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S, Lange B, Rovera G . VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia Blood 1992 79: 223–228

    CAS  Google Scholar 

  35. Rosenquist R, Thunberg U, Li AH, Forestier E, Lonnerholm G, Lindh J, Sundstrom C, Sallstrom J, Holmberg D, Roos G . Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-B acute lymphoblastic leukemia Eur J Haematol 1999 63: 171–179

    Article  CAS  Google Scholar 

  36. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, von dem Borne AE, van der Schoot CE . Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia Blood 1993 82: 581–589

    CAS  PubMed  Google Scholar 

  37. Xu Y, Davidson L, Alt FW, Baltimore D . Deletion of the Ig kappa light chain intronic enhancer/matrix attachment region impairs but does not abolish V kappa J kappa rearrangement Immunity 1996 4: 377–385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank TM van Os and WM Comans-Bitter for their assistance in the preparation of the figures. We acknowledge Daniëlle Korpershoek and Annella Boon for their accurate secretarial support. We thank Annemarie Wijkhuijs, Daniëlle Jacobs, Jacqueline van Valen, Sandra de Bruijn-Versteeg, Rob Dee, and Christa Homburg for their technical support. We thank the medical doctors of the department of Pediatrics, Sophia Children ‘s Hospital Rotterdam for the collection of samples at diagnosis and relapse. We thank the Dutch Childhood Leukemia Study Group for kindly providing some additional precursor-B-ALL cell samples. Board members of the DCLSG are PJ van Dijken, K Hählen, WA Kamps, ETh Korthof, FAE Nabben, A Postma, JA Rammeloo, GAM de Vaan, AJP Veerman, and RS Weening. This study was supported by the Dutch Cancer Foundation/Koningin Wilhelmina Fonds (grant SNWLK 2000-2268 and grant SNWLK 97–1567) and the Ank Van Vlissingen Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Velden, V., Willemse, M., van der Schoot, C. et al. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 16, 928–936 (2002). https://doi.org/10.1038/sj.leu.2402475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402475

Keywords

This article is cited by

Search

Quick links