Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular characterization of genomic AML1-ETO fusions in childhood leukemia

Abstract

T(8;21) AML1(CBFA2)-ETO(MTG8) is the most common chromosomal translocation in acute myeloid leukemia (AML) in both children and adults. We sought to understand the structure and gain insight into the fusion process between AML1 and ETO by sequencing genomic fusions in 17 primary childhood AMLs and two cell lines with t(8;21). Reciprocal translocations were sequenced for seven of the 19 samples. We assumed a null hypothesis that the translocation breakpoints would be evenly distributed along the intronic breakpoint cluster regions. Testing for multimodality via smoothed bootstrap statistical methods suggested, however, the presence of two separate cluster regions within both the AML1 and ETO breakpoint cluster regions. ETObreakpoints were predominantly located in intron 1B in a defined cluster 5′ of exon 1A (scan statistic P value = 0.00001). All patients with available RNA expressed an AML1-ETO mRNA fusion between exon 5 of AML1 and exon 2 of ETO. Since the structural restraints for the fusion protein of AML1-ETO exclude exon 1A, we reason that ETO intron 1B harbors a structural feature with propensity for breakage and/or recombination. Chromosomal breakpoints displayed evidence of fusion by a non-homologous end joining process, with microhomologies and nontemplate nucleotides at some fusion junctions. Breakpoints in general displayed similar complexity of duplications, deletions, and insertions to other common pediatric leukemia translocations (TEL-AML1, MLL-AF4, PML-RARA, CBFB-MYH11) that we and others have analyzed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cayuela JM, Gardie B, Sigaux F . Disruption of the multiple tumor suppressor gene MTS1/p16(INK4a)/CDKN2 by illegitimate V(D)J recombinase activity in T-cell acute lymphoblastic leukemias Blood 1997 90: 3720–3726

    CAS  PubMed  Google Scholar 

  2. Jager U, Bocskor S, Le T, Mitterbauer G, Bolz I, Chott A, Kneba M, Mannhalter C, Nadel B . Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation Blood 2000 95: 3520–3529

    CAS  PubMed  Google Scholar 

  3. Haluska FG, Finver S, Tsujimoto Y, Croce CM . The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining Nature 1986 324: 158–161

    Article  CAS  PubMed  Google Scholar 

  4. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM . The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining Science 1985 229: 1390–1393

    Article  CAS  PubMed  Google Scholar 

  5. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR . Disruption of the human SCL locus by ‘illegitimate’ V-(D)-J recombinase activity Science 1990 250: 1426–1429

    Article  CAS  PubMed  Google Scholar 

  6. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P . Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia Blood 1995 86: 3542–3552

    CAS  PubMed  Google Scholar 

  7. Ahuja HG, Felix CA, Aplan PD . The t(11;20)(p15;q11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOP1 fusion Blood 1999 94: 3258–3261

    CAS  PubMed  Google Scholar 

  8. Quesnel B, Kantarjian H, Bjergaard JP, Brault P, Estey E, Lai JL, Tilly H, Stoppa AM, Archimbaud E, Harousseau JL, Bauters F, Fenaux P . Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature J Clin Oncol 1993 11: 2370–2379

    Article  CAS  PubMed  Google Scholar 

  9. Roulston D, Espinosa R 3rd, Nucifora G, Larson RA, Le Beau MM, Rowley JD . CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy Blood 1998 92: 2879–2885

    CAS  PubMed  Google Scholar 

  10. Ahuja HG, Felix CA, Aplan PD . Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations Genes Chromosomes Cancer 2000 29: 96–105

    Article  CAS  PubMed  Google Scholar 

  11. Felix CA, Lange BJ, Hosler MR, Fertala J, Bjornsti MA . Chromosome band 11q23 translocation breakpoints are DNA topoisomerase II cleavage sites Cancer Res 1995 55: 4287–4292

    CAS  PubMed  Google Scholar 

  12. Broeker PL, Super HG, Thirman MJ, Pomykala H, Yonebayashi Y, Tanabe S, Zeleznik-Le N, Rowley JD . Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites Blood 1996 87: 1912–1922

    CAS  PubMed  Google Scholar 

  13. Reichel M, Gillert E, Breitenlohner I, Repp R, Greil J, Beck JD, Fey GH, Marschalek R . Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research Cancer Res 1999 59: 3357–3362

    CAS  PubMed  Google Scholar 

  14. Wiemels JL, Alexander FE, Cazzaniga G, Biondi A, Mayer SP, Greaves M . Microclustering of TEL-AML1 breakpoints in childhood acute lymphoblastic leukemia Genes Chromosomes Cancer 2000 29: 219–228

    Article  CAS  PubMed  Google Scholar 

  15. van der Reijden BA, Dauwerse HG, Giles RH, Jagmohan-Changur S, Wijmenga C, Liu PP, Smit B, Wessels HW, Beverstock GC, Jotterand-Bellomo M, Martinet D, Muhlematter D, Lafage-Pochitaloff M, Gabert J, Reiffers J, Bilhou-Nabera C, van Ommen GJ, Hagemeijer A, Breuning MH . Genomic acute myeloid leukemia-associated inv(16)(p13q22) breakpoints are tightly clustered Oncogene 1999 18: 543–550

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida H, Naoe T, Fukutani H, Kiyoi H, Kubo K, Ohno R . Analysis of the joining sequences of the t(15;17) translocation in human acute promyelocytic leukemia: sequence non-specific recombination between the PML and RARA genes within identical short stretches Genes Chromosomes Cancer 1995 12: 37–44

    Article  CAS  PubMed  Google Scholar 

  17. Atlas M, Head D, Behm F, Schmidt E, Zeleznik-Le NH, Roe BA, Burian D, Domer PH . Cloning and sequence analysis of four t(9;11) therapy-related leukemia breakpoints Leukemia 1998 12: 1895–1902

    Article  CAS  PubMed  Google Scholar 

  18. Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL . Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's Cancer Group Cancer Causes Control 1996 7: 581–590

    Article  CAS  PubMed  Google Scholar 

  19. Ross JA, Potter JD, Robison LL . Infant leukemia, topoisomerase II inhibitors, and the MLL gene J Natl Cancer Inst 1994 86: 1678–1680

    Article  CAS  PubMed  Google Scholar 

  20. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC, Chen Z, Cimino G, Cordoba JC, Gu LJ, Hussein H, Ishii E, Kamel AM, Labra S, Magalhaes IQ, Mizutani S, Petridou E, de Oliveira MP, Yuen P, Wiemels JL, Greaves MF . Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion Cancer Res 2001 61: 2542–2546

    CAS  PubMed  Google Scholar 

  21. Thandla SP, Ploski JE, Raza-Egilmez SZ, Chhalliyil PP, Block AW, de Jong PJ, Aplan PD . ETV6-AML1 translocation breakpoints cluster near a purine/pyrimidine repeat region in the ETV6 gene Blood 1999 93: 293–299

    CAS  PubMed  Google Scholar 

  22. Wiemels JL, Greaves M . Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia Cancer Res 1999 59: 4075–4082

    CAS  PubMed  Google Scholar 

  23. Romana S, Poirel H, Della Valle V, Mauchauffe M, Busson-Le Coniat M, Berger R, Bernard OA . Molecular analysis of chromosomal breakpoints in three examples of chromosomal translocation involving the TEL gene Leukemia 1999 13: 1754–1759

    Article  CAS  PubMed  Google Scholar 

  24. Andersen MT, Nordentoft I, Hjalgrim LL, Christiansen CL, Jakobsen VD, Hjalgrim H, Pallisgaard N, Madsen HO, Christiansen M, Ryder LP, Clausen N, Hokland P, Schmiegelow K, Melbye M, Jorgensen P . Characterization of t(12;21) breakpoint junctions in acute lymphoblastic leukemia Leukemia 2001 15: 858–859

    Article  CAS  PubMed  Google Scholar 

  25. Larson RA, Le Beau MM, Ratain MJ, Rowley JD . Balanced translocations involving chromosome bands 11q23 and 21q22 in therapy-related leukemia (letter) Blood 1992 79: 1892–1893

    CAS  PubMed  Google Scholar 

  26. Pedersen-Bjergaard J, Philip P . Balanced translocations involving chromosome bands 11q23 and 21q22 are highly characteristic of myelodysplasia and leukemia following therapy with cytostatic agents targeting at DNA-topoisomerase II (letter) Blood 1991 78: 1147–1148

    CAS  PubMed  Google Scholar 

  27. Pedersen-Bjergaard J, Daugaard G, Hansen SW, Philip P, Larsen SO, Rorth M . Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours Lancet 1991 338: 359–363

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen-Bjergaard J, Sigsgaard TC, Nielsen D, Gjedde SB, Philip P, Hansen M, Larsen SO, Rorth M, Mouridsen H, Dombernowsky P . Acute monocytic or myelomonocytic leukemia with balanced chromosome translocations to band 11q23 after therapy with 4-epi-doxorubicin and cisplatin or cyclophosphamide for breast cancer J Clin Oncol 1992 10: 1444–1451

    Article  CAS  PubMed  Google Scholar 

  29. Sandoval C, Pui CH, Bowman LC, Heaton D, Hurwitz CA, Raimondi SC, Behm FG, Head DR . Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation J Clin Oncol 1993 11: 1039–1045

    Article  CAS  PubMed  Google Scholar 

  30. Cuneo A, Fagioli F, Pazzi I, Tallarico A, Previati R, Piva N, Carli MG, Balboni M, Castoldi G . Morphologic, immunologic and cytogenetic studies in acute myeloid leukemia following occupational exposure to pesticides and organic solvents Leuk Res 1992 16: 789–796

    Article  CAS  PubMed  Google Scholar 

  31. Golomb HM, Alimena G, Rowley JD, Vardiman JW, Testa JR, Sovik C . Correlation of occupation and karyotype in adults with acute nonlymphocytic leukemia Blood 1982 60: 404–411

    CAS  PubMed  Google Scholar 

  32. Li Y-S, Zhao Y-L, Jiang Q-P, Yang C-L . Specific chromosome changes and non-occupational exposure to potentially carcinogenic agents in acute leukemia in China Leuk Res 1989 13: 367–376

    Article  CAS  PubMed  Google Scholar 

  33. Mitelman F, Nilsson PG, Brandt L, Alimena G, Gastaldi R, Dallapiccola B . Chromosome pattern, occupation, and clinical features in patients with acute nonlymphocytic leukemia Cancer Genet Cytogenet 1981 4: 197–214

    Article  CAS  PubMed  Google Scholar 

  34. Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J, Parganas E, Ihle JN, Rowley JD . Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations Proc Natl Acad Sci USA 1994 91: 4004–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, Nagase T, Yokoyama Y, Ohki M . The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family Blood 1998 91: 4028–4037

    CAS  PubMed  Google Scholar 

  36. Downing JR . The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance Br J Haematol 1999 106: 296–308

    Article  CAS  PubMed  Google Scholar 

  37. Tighe JE, Calabi F . t(8;21) breakpoints are clustered between alternatively spliced exons of MTG8 Clin Sci (Colch) 1995 89: 215–218

    Article  CAS  Google Scholar 

  38. Tighe JE, Calabi F . Alternative, out-of-frame runt/MTG8 transcripts are encoded by the derivative (8) chromosome in the t(8;21) of acute myeloid leukemia M2 Blood 1994 84: 2115–2121

    CAS  PubMed  Google Scholar 

  39. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H . Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt Blood 1992 80: 1825–1831

    CAS  PubMed  Google Scholar 

  40. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation Blood 1991 77: 2031–2036

    CAS  PubMed  Google Scholar 

  41. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T, Koizumi T, Nishimura R, Isobe T, Chihara K . Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression Br J Haematol 1995 89: 805–811

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu K, Miyoshi H, Kozu T, Nagata J, Enomoto K, Maseki N, Kaneko Y, Ohki M . Consistent disruption of the AML1 gene occurs within a single intron in the t(8;21) chromosomal translocation Cancer Res 1992 52: 6945–6948

    CAS  PubMed  Google Scholar 

  43. Loader CR . Large deviation approximations to the distribution of scan statistics Adv Appl Prob 1991 23: 751–771

    Article  Google Scholar 

  44. Huffer F, Lin C-T . Approximating the distribution of the scan statistic using moments of the number of clumps J Amer Stat Assoc 1997 92: 1466–1475

    Article  Google Scholar 

  45. Segal MR, Wiemels JL . Clustering of translocation breakpoints J Amer Stat Assoc 2001 (in press)

  46. Silverman BW . Using kernel density estimates to investigate multimodality J R Stat Soc B 1981 43: 97–99

    Google Scholar 

  47. Sarper N, Ozbek U, Agaoglu L, Ozgen U, Eryilmaz E, Yalman N, Anak S, Devecioglu O, Gedikoglu G . Is AML1/ETO gene expression a good prognostic factor in pediatric acute myeloblastic leukemia? Pediatr Hematol Oncol 2000 17: 577–583

    Article  CAS  PubMed  Google Scholar 

  48. Kalwinsky DK, Raimondi SC, Schell MJ, Mirro J Jr, Santana VM, Behm F, Dahl GV, Williams D . Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia J Clin Oncol 1990 8: 75–83

    Article  CAS  PubMed  Google Scholar 

  49. Martinez-Climent JA, Lane NJ, Rubin CM, Morgan E, Johnstone HS, Mick R, Murphy SB, Vardiman JW, Larson RA, Le Beau MM, Rowley JD . Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo Leukemia 1995 9: 95–101

    CAS  PubMed  Google Scholar 

  50. Shimada H, Ichikawa H, Nakamura S, Katsu R, Iwasa M, Kitabayashi I, Ohki M . Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF Blood 2000 96: 655–663

    CAS  PubMed  Google Scholar 

  51. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation Mol Cell Biol 1995 15: 1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van de Locht LT, Smetsers TF, Wittebol S, Raymakers RA, Mensink EJ . Molecular diversity in AML1/ETO fusion transcripts in patients with t(8;21) positive acute myeloid leukaemia Leukemia 1994 8: 1780–1784

    CAS  PubMed  Google Scholar 

  53. Saunders MJ, Tobal K, Keeney S, Liu Yin JA . Expression of diverse AML1/MTG8 transcripts is a consistent feature in acute myeloid leukemia with t(8;21) irrespective of disease phase Leukemia 1996 10: 1139–1142

    CAS  PubMed  Google Scholar 

  54. Xiao Z, Hao Y, Bian S . Acute myeloid leukemia M2b (subacute myelogenous leukemia) in China (letter) Leuk Res 1997 21: 351–352

    Article  CAS  PubMed  Google Scholar 

  55. Gillert E, Leis T, Repp R, Reichel M, Hosch A, Breitenlohner I, Angermuller S, Borkhardt A, Harbott J, Lampert F, Griesinger F, Greil J, Fey GH, Marschalek R . A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells Oncogene 1999 18: 4663–4671

    Article  CAS  PubMed  Google Scholar 

  56. Reichel M, Gillert E, Nilson I, Siegler G, Greil J, Fey GH, Marschalek R . Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation Oncogene 1998 17: 3035–3044

    Article  CAS  PubMed  Google Scholar 

  57. Reichel M, Gillert E, Angermuller S, Hensel JP, Heidel F, Lode M, Leis T, Biondi A, Haas OA, Strehl S, Panzer-Grumayer ER, Griesinger F, Beck JD, Greil J, Fey GH, Uckun FM, Marschalek R . Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL Oncogene 2001 20: 2900–2907

    Article  CAS  PubMed  Google Scholar 

  58. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia Proc Natl Acad Sci USA 1998 95: 4584–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero Blood 1999 94: 1057–1062

    CAS  PubMed  Google Scholar 

  60. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF . Prenatal origin of acute lymphoblastic leukaemia in children Lancet 1999 354: 1499–1503

    Article  CAS  PubMed  Google Scholar 

  61. Smith MT, Zhang L, Wang Y, Hayes RB, Li G, Wiemels J, Dosemeci M, Titenko-Holland N, Xi L, Kolachana P, Yin S, Rothman N . Increased translocations and aneusomy in chromosomes 8 and 21 among workers exposed to benzene Cancer Res 1998 58: 2176–2181

    CAS  PubMed  Google Scholar 

  62. Stanulla M, Wang J, Chervinsky DS, Aplan PD . Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus Leukemia 1997 11: 490–496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the UK Childhood Cancer Study Group and individual clinicians in the UK and California for access to patient material. We thank also Susan Colman, Dr Xiaomei Ma, Yunxia Wang, and Dr Luoping Zhang for initial processing and abstracting of samples. We also thank Professors N Kamada and S Matozaki for providing cell lines. These studies were supported by a Leukaemia Research Fund Specialist Programme grant (ZX, MFG), and grants from the National Institutes of Health (PB (ES09137), MTS (ES04705), MRS (AI40906, AI39932), JLW (CA89032)).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Greaves, M., Buffler, P. et al. Molecular characterization of genomic AML1-ETO fusions in childhood leukemia. Leukemia 15, 1906–1913 (2001). https://doi.org/10.1038/sj.leu.2402318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402318

Keywords

Search

Quick links