Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Lymphocytic Leukemia

Distinct gene expression profiling in chronic lymphocytic leukemia with 11q23 deletion

Abstract

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with regard to its clinical course. The limitations of the methods currently available for prognostic assessment in CLL do not allow accurate prediction of the risk of disease progression in individual patients. The recently developed cDNA array technique provides a unique opportunity to study gene expression in various malignancies. To identify new molecular markers for prognostication of CLL patients, we analyzed cDNA arrays by using hierarchical clustering and standard statistic t-test on 34 CLL patients. We found significant expression differences in 78 genes compared to the reference tonsillar B lymphocytes. A cluster of genes, LCP1, PARP, BLR1, DEK, NPM, MCL1, SLP76, STAM, HIVEP1, EVI2B, CD25, HTLF, HIVEP2, BCL2, MNDA,PBX3, EBI2, TCF1, CGRP, CD14, IL8,GZMK, GPR17 and CD79B, was associated (P < 0.05) with the unfavorable 11q deletion and also with the unfavorable Binet stages B and C. We present here gene expression profiling that is associated with CLL patients with the 11q23 deletion. Many of the genes in the cluster have not previously been shown to be related to the initiation or progression of CLL. These novel findings provide fundamental information for further attempts to understand the interaction of the clustered genes in the leukomogenesis of CLL in order to better design treatments aimed at specific molecular target(s).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F, Thomas M, Tchernia G, Jacquillat C, Boivin P, Lesty C, Duault MT, Monconduit M, Belabbes S, Gremy F . A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis Cancer 1981 48: 198–206

    Article  CAS  Google Scholar 

  2. Knuutila S, Elonen E, Teerenhovi L, Rossi L, Leskinen R, Bloomfield CD, de la Chapelle A . Trisomy 12 in B cells of patients with B-cell chronic lymphocytic leukemia N Engl J Med 1986 314: 865–869

    Article  CAS  Google Scholar 

  3. Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, Parker AC, Castoldi GL, Guneo A, Knuutila S, Elonen E, Gahrton G . Prognostic subgroups in B cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities N Engl J Med 1990 323: 720–724

    Article  CAS  Google Scholar 

  4. Karhu R, Knuutila S, Kallioniemi O-P, Siitonen S, Aine R, Vilpo L, Vilpo J . Frequent loss of the 11q14–24 region in chronic lymphocytic leukemia: a study by comparative genomic hybridization Genes Chromos Cancer 1997 19: 286–290

    Article  CAS  Google Scholar 

  5. Larramendy ML, Siitonen SM, Zhu Y, Hurme M, Vilpo L, Vilpo JA, Knuutila S . Optimized mitogen stimulation induces proliferation of neoplastic B cells in chronic lymphocytic leukemia: significance for cytogenetic analysis Cytogenet Cell Genet 1998 82: 215–221

    Article  CAS  Google Scholar 

  6. Pérez Losada A, Wessman M, Tiainen M, Hopman AHN, Willard HF, Solé F, Caballín MR, Woessner S, Knuutila S . Trisomy 12 in chronic lymphocytic leukemia: an interphase cytogenetic study Blood 1991 78: 775–779

    Google Scholar 

  7. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P . Genomic aberrations and survival in chronic lymphocytic leukemia N Engl J Med 2000 343: 1910–1916

    Article  CAS  Google Scholar 

  8. Zhu Y, Monni O, El-Rifai W, Siitonen SM, Vilpo L, Vilpo J, Knuutila S . Discontinuous deletions at 11q23 in B cell chronic lymphocytic leukemia Leukemia 1999 13: 708–712

    Article  CAS  Google Scholar 

  9. Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, Fischer K, Hunstein W, Lichter P . 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis Blood 1997 89: 2516–2522

    CAS  PubMed  Google Scholar 

  10. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM . Use of a cDNA microarray to analyse gene expression patterns in human cancer Nat Genet 1996 14: 457–460

    Article  CAS  Google Scholar 

  11. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES . Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 1999 286: 531–537

    Article  CAS  Google Scholar 

  12. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . Clinical staging of chronic lymphocytic leukemia Blood 1975 46: 219–234

    CAS  PubMed  Google Scholar 

  13. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French–American–British (FAB) Cooperative Group J Clin Pathol 1989 42: 567–584

    Article  CAS  Google Scholar 

  14. Zhu Y, Monni O, Franssila K, Elonen E, Vilpo J, Joensuu H, Knuutila S . Deletions at 11q23 in different lymphoma subtypes Haematologica 2000 85: 908–912

    CAS  PubMed  Google Scholar 

  15. Takeshita T, Arita T, Higuchi M, Asao H, Endo K, Kuroda H, Tanaka N, Murata K, Ishii N, Sugamura K . STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction Immunity 1997 6: 449–457

    Article  CAS  Google Scholar 

  16. Fu C, Chan AC . Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cgamma, Grb2, and Vav after B cell antigen receptor activation J Biol Chem 1997 272: 27362–27368

    Article  CAS  Google Scholar 

  17. Pivniouk V, Tsitsikov E, Swinton P, Rathbun G, Alt FW, Geha RS . Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76 Cell 1998 94: 229–238

    Article  CAS  Google Scholar 

  18. Klein E, Teramoto N, Gogolak P, Nagy N, Bjorkholm M . LMP-1, the Epstein–Barr virus-encoded oncogene with a B cell activating mechanism similar to CD40 Immunol Lett 1999 68: 147–154

    Article  CAS  Google Scholar 

  19. Petrella T, Yaziji N, Collin F, Rifle G, Morlevat F, Arnould L, Fargeot P, Depret O . Implication of the Epstein–Barr virus in the progression of chronic lymphocytic leukaemia/small lymphocytic lymphoma to Hodgkin-like lymphomas Anticancer Res 1997 17: 3907–3913

    CAS  PubMed  Google Scholar 

  20. Cawthon RM, Andersen LB, Buchberg AM, Xu GF, O'Connell P, Viskochil D, Weiss RB, Wallace MR, Marchuk DA, Culver M, Stevens J, Jenkins NA, Copeland NG, Collins FS, White R . cDNA sequence and genomic structure of EV12B, a gene lying within an intron of the neurofibromatosis type 1 gene Genomics 1991 9: 446–460

    Article  CAS  Google Scholar 

  21. Kaufmann D, Gruener S, Braun F, Stark M, Griesser J, Hoffmeyer S, Bartelt B . EVI2B, a gene lying in an intron of the neurofibromatosis type 1 (NF1) gene, is as the NF1 gene involved in differentiation of melanocytes and keratinocytes and is overexpressed in cells derived from NF1 neurofibromas DNA Cell Biol 1999 18: 345–356

    Article  CAS  Google Scholar 

  22. Buchberg AM, Bedigian HG, Jenkins NA, Copeland NG . Evi-2, a common integration site involved in murine myeloid leukemogenesis Mol Cell Biol 1990 10: 4658–4666

    Article  CAS  Google Scholar 

  23. Keating MJ . Chronic lymphocytic leukemia Semin Oncol 1999 26: 107–114

    CAS  PubMed  Google Scholar 

  24. Miranda RN, Briggs RC, Shults K, Kinney MC, Jensen RA, Cousar JB . Immunocytochemical analysis of MNDA in tissue sections and sorted normal bone marrow cells documents expression only in maturing normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes Hum Pathol 1999 30: 1040–1049

    Article  CAS  Google Scholar 

  25. Briggs RC, Briggs JA, Ozer J, Sealy L, Dworkin LL, Kingsmore SF, Seldin MF, Kaur GP, Athwal RS, Dessypris EN . The human myeloid cell nuclear differentiation antigen gene is one of at least two related interferon-inducible genes located on chromosome 1q that are expressed specifically in hematopoietic cells Blood 1994 83: 2153–2162

    CAS  PubMed  Google Scholar 

  26. Callea V, Morabito F, Oliva BM, Stelitano C, Levato D, Dattilo A, Gangemi F, Iorfida A, Iacopino P, Nobile F, Molica S, Brugiatelli M . Surface CD14 positivity in B-cell chronic lymphocytic leukaemia is related to clinical outcome Br J Haematol 1999 107: 347–352

    Article  CAS  Google Scholar 

  27. McGillis JP, Rangnekar V, Cialella JR . A role for calcitonin gene related peptide (CGRP) in the regulation of early B lymphocyte differentiation Can J Physiol Pharmacol 1995 73: 1057–1064

    Article  CAS  Google Scholar 

  28. Fernandez S, Knopf MA, McGillis JP . Calcitonin-gene related peptide (CGRP) inhibits interleukin-7-induced pre-B cell colony formation J Leukoc Biol 2000 67: 669–676

    Article  CAS  Google Scholar 

  29. Francia di Celle P, Mariani S, Riera L, Stacchini A, Reato G, Foa R . Interleukin-8 induces the accumulation of B-cell chronic lymphocytic leukemia cells by prolonging survival in an autocrine fashion Blood 1996 87: 4382–4389

    CAS  PubMed  Google Scholar 

  30. Garcia Vela J, Delgado I, Benito L, Monteserin M, Garcia Alonso L, Somolinos N, Andreu M, Ona F . CD79b expression in B cell chronic lymphocytic leukemia: its implication for minimal residual disease detection Leukemia 1999 13: 1501–1505

    Article  CAS  Google Scholar 

  31. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M . A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen Cell 1996 87: 1037–1047

    Article  CAS  Google Scholar 

  32. Birkenbach M, Josefsen K, Yalamanchili R, Lenoir G, Kieff E . Epstein–Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors J Virol 1993 67: 2209–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stratowa C, Löffler G, Lichter P, Stilgenbauer S, Haberl P, Schweifer N, Döhner H, Wilgenbus KK . cDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking Int J Cancer 2001 91: 474–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Medical Research Fund of Tampere University Hospital, the Finnish Foundation for Cancer Research, the Sigrid Jusélius Foundation, Paulo Foundation, Finnish Cultural Foundation and Helsinki University Central Hospital Research Funds. We thank the Tampere CLL Group for collaboration, and Leena Pankko and Merja Suoranta for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aalto, Y., El-Rifai, W., Vilpo, L. et al. Distinct gene expression profiling in chronic lymphocytic leukemia with 11q23 deletion. Leukemia 15, 1721–1728 (2001). https://doi.org/10.1038/sj.leu.2402282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402282

Keywords

This article is cited by

Search

Quick links