Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Blastic Crisis of CML

Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia

Abstract

The p51/p63 gene, a novel member of the p53 gene family, has recently been identified at 3q27–9. There are at least six major isotypes of p51/p63 mRNA transcripts. p51A/TAp63γ has the potential to induce apoptosis and growth suppression in a manner similar to p53, and other isotypes may suppress the p53 and p51A/TAp63γ genes in a dominant-negative manner. We analyzed the mutation and expression of the p51/p63 gene in 80 cases of chronic myelogenous leukemia (CML) to evaluate its role in blastic transformation. Expression of the p51/p63 gene was detected in 74 cases. The α isotype of p51/p63 transcripts was dominantly expressed in 72 of these 74 cases. There was no correlation between the isotypes of p51/p63 transcripts and the clinical phase. Mutations of the p51/p63 gene were found in six cases. All these mutated cases expressed p51B/TAp63 α. In four of the six cases, the mutations were within a limited region (codon 151-170) corresponding to the DNA-binding domain. We hypothesized that this limited region is a hot spot for mutation of the p51/p63 gene. Mutations of the p53 gene were found in four cases of CML in blastic crisis (BC). Frequencies of the p51/p63 and p53 gene mutations were higher in BC (p51/p63 gene, 11.8%; p53 gene, 7.8%) than in the chronic phase (p51/p63 gene, 1.5%; p53 gene, 0%). The p51/p63 gene mutation may act similarly to the p53 gene mutation as a genetic alteration potentially responsible for the progression of CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kaelin WG Jr . The emerging p53 gene family J Natl Cancer Inst 1999 91: 594–598

    Article  Google Scholar 

  2. Diccianni MB, Yu J, Hsiao M, Mukherjee S, Shao LE, Yu AL . Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia Blood 1994 84: 3105–3112

    CAS  PubMed  Google Scholar 

  3. Marks DI, Kurz BW, Link MP, Ng E, Shuster JJ, Lauer SJ, Brodsky I, Haines DS . High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis Blood 1996 87: 1155–1161

    CAS  PubMed  Google Scholar 

  4. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P . p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies Blood 1994 84: 3148–3157

    CAS  PubMed  Google Scholar 

  5. Guinn BA, Mills KI . p53 mutations, methylation and genomic instability in the progression of chronic myeloid leukaemia Leuk Lymphoma 1997 26: 211–226

    Article  CAS  Google Scholar 

  6. Nakai H, Misawa S, Toguchida J, Yandell DW, Ishizaki K . Frequent p53 gene mutations in blast crisis of chronic myelogenous leukemia, especially in myeloid crisis harboring loss of a chromosome 17p Cancer Res 1992 52: 6588–6593

    CAS  PubMed  Google Scholar 

  7. Melo JV . The molecular biology of chronic myeloid leukemia Leukemia 1996 10: 751–756

    CAS  Google Scholar 

  8. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D . Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers Cell 1997 90: 809–819

    Article  CAS  Google Scholar 

  9. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawa A, Obinata M, Ikawa S . Cloning and functional analysis of human p51, which structurally and functionally resembles p53 Nat Med 1998 4: 839–843

    Article  CAS  Google Scholar 

  10. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon . p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities Mol Cell 1998 2: 305–316

    Article  CAS  Google Scholar 

  11. Shimada A, Kato S, Enjo K, Osada M, Ikawa Y, Kohono K, Obinata M, Kanamaru R, Ikawa S, Isioka C . The transcriptional activities of p53 and its homologus p51/p63 similarities and differences Cancer Res 1999 59: 2781–2786

    CAS  Google Scholar 

  12. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . p63 is a homologue required for limb and epidermal morphogenesis Nature 1999 398: 708–713

    Article  CAS  Google Scholar 

  13. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F . p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development Nature 1999 398: 714–718

    Article  CAS  Google Scholar 

  14. Abo J, Inokuchi K, Dan K, Nomura T . p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia Blood 1993 82: 2829–2836

    CAS  PubMed  Google Scholar 

  15. Inokuchi K, Abo J, Takahashi H, Miyake K, Inokuchi S, Dan K, Nomura T . Establishment and characterization of a villous lymphoma cell line from specific B-cell lymphoma Leuk Res 1995 19: 817–822

    Article  CAS  Google Scholar 

  16. Tani M, Shimizu K, Kawahara C, Kohno T, Ishimoto O, Ikawa S, Yokota J . Mutation and expression of the p51 gene in human lung cancer Neoplasia 1999 1: 71–79

    Article  CAS  Google Scholar 

  17. Sunahara M, Shishikura T, Takahashi M, Todo S, Yamamoto N, Kimura H, Kato S, Ishioka C, Ikawa S, Ikawa Y, Nakagawa A . Mutation analysis of p51A/TAp63γ, a p53 homolog, in non-small cell lung cancer and breast cancer Oncogene 1999 18: 3761–3765

    Article  CAS  Google Scholar 

  18. Orita M, Suzuki Y, Sekiya T, Hayashi K . Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction Genomics 1989 5: 874–879

    Article  CAS  Google Scholar 

  19. Nisi H, Isikawa K, Sagawa Y, Usuda S, Fujito A, Ito H, Senoo M, Kato H, Takayama M . Mutation and transcription analyses of the p63 gene in cervical carcinoma Int J Oncol 1999 15: 1149–1153

    Google Scholar 

  20. Ikawa S, Nakagawa A, Ikawa Y . p53 family genes: structural comparison, expression and mutation Cell Death Differ 1999 6: 1154–1161

    Article  CAS  Google Scholar 

  21. Schultz J, Ponting CP, Hofmann K, Bork P . SAM as a protein interaction domain involved in developmental regulation Protein Sci 1997 6: 249–253

    Article  CAS  Google Scholar 

  22. Thanos CD, Goodwill KE, Bowie JU . Oligomeric structure of the human EphB2 SAM domain Science 1999 283: 833–836

    Article  CAS  Google Scholar 

  23. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F . A novel putative tyrosine kinase receptor encoded by the eph gene Science 1987 238: 1717–1720

    Article  CAS  Google Scholar 

  24. Kyba M, Brock HW . The SAM domain of polyhomeotic, RAE28, and scm mediates specific interactions through conserved residues Dev Genet 1998 22: 74–84

    Article  CAS  Google Scholar 

  25. Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter-Fourt I, Charon M, Levin J, Bernard O, Ghysdael J . A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of TEL-PDGFR beta oncoprotein EMBO J 1997 16: 69–82

    Article  CAS  Google Scholar 

  26. Hagiwara K, McMenamin MG, Miura K, Harris CC . Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers Cancer Res 1999 59: 4165–4169

    CAS  PubMed  Google Scholar 

  27. Kato S, Shimada A, Osada M, Ikawa S, Obinata M, Nakagawa A, Kanamaru R, Isioka C . Effect of p51/p63 missense mutations on transcriptional activities of p53 downstream gene promoters Cancer Res 1999 59: 5908–5911

    CAS  PubMed  Google Scholar 

  28. Soussi T, Caron de Fromentel C, Mechali M, May P, Kress M . Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53 Oncogene 1987 1: 71–78

    CAS  PubMed  Google Scholar 

  29. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P . Mutations in the p53 gene occur in diverse human tumor types Nature 1989 342: 705–708

    Article  CAS  Google Scholar 

  30. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E . p53 in chronic myelogenous leukemia in acute phase Proc Natl Acad Sci USA 1991 88: 6293–6297

    Article  CAS  Google Scholar 

  31. Cogswell PC, Morgan R, Dunn M, Neubauer A, Nelson P, Poland-Johnston NK, Sandberg AA, Liu E . Mutations of the ras protooncogenes in chronic myelogenous leukemia: a high frequency of ras mutations in bcr/abl rearrangement-negative chronic myelogenous leukemia Blood 1989 74: 2629–2633

    CAS  PubMed  Google Scholar 

  32. Sawyers C . The role of MYC in transformation by BCR-ABL Leuk Lymphoma 1993 11 (Suppl. 1): 45–46

    Article  Google Scholar 

  33. Jennings B . A study of changes in methylation status and copy number at the c-myc locus during progression of chronic myeloid leukemia Br J Haematol 1995 89 (Suppl. 1): 37

    Google Scholar 

  34. Ahuja HG, Jat PS, Foti A, Bar-Eli M, Cline MJ . Abnormalities of the retinoblastoma gene in the pathogenesis of acute leukemia Blood 1991 78: 3259–3268

    CAS  PubMed  Google Scholar 

  35. Towatari M, Adachi K, Kato H, Saito H . Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia Blood 1991 78: 2178–3181

    CAS  PubMed  Google Scholar 

  36. Sill H, Goldman JM, Cross NC . Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia Blood 1995 85: 2013–2016

    CAS  PubMed  Google Scholar 

  37. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H . Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia EMBO J 1994 13: 504–510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr H Nishi, Department of Obstetrics and Gynecology, Tokyo Medical College, for his useful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, H., Inokuchi, K., Sakuma, Y. et al. Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia 15, 1729–1734 (2001). https://doi.org/10.1038/sj.leu.2402265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402265

Keywords

This article is cited by

Search

Quick links