Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Functional characterization of minimal residual disease for P-glycoprotein and multidrug resistance protein activity in acute myeloid leukemia

Abstract

Relapse is common in acute myeloid leukemia (AML) due to persistence of residual leukemia cells: minimal residual disease (MRD). In 102 out of 127 patients (80%), cells at diagnosis displayed one or more leukemia-associated phenotypes (LAP), ie combinations of cell surface markers which are absent in normal cells and can thus be used to detect MRD at follow-up. Functional characterization of MRD cells for P-glycoprotein (Pgp) and multidrug resistance protein (MRP) activity is essential to investigate the role of these drug transport proteins in multidrug resistance in AML. A fluorescent probe assay using Syto16/PSC833 and calcein-AM/probenecid as substrate/ modulator of the Pgp and MRP pump, respectively, and subsequent labeling of cells with monoclonal antibodies for LAP detection allowed simultaneous detection of LAP and Pgp or MRP activity. Validation of this assay is shown for 30 newly diagnosed AML and 11 MRD situations. In addition, no significant differences were found when comparing fresh and cryopreserved de novo AML for LAP expression (n = 43), Pgp (n = 30) and MRP (n = 24) function and for MRD samples for simultaneous LAP expression and Pgp/MRP activity (n = 10). This approach enables longitudinal and multicenter studies on the detection, quantification and functional characterisation of MRD cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Campana D, Coustan-Smith E . Detection of minimal residual disease in acute leukemia by flow cytometry Cytometry 1999 38: 139–152

    Article  CAS  PubMed  Google Scholar 

  2. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance Blood 1995 85: 1416–1434

    Article  CAS  PubMed  Google Scholar 

  3. Orfao A, Schmitz G, Brando B, Ruiz-Arguelles A, Basso G, Braylan R, Rothe G, Lacombe F, Lanza F, Papa S, Lucio P, San Miguel JF . Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions Clin Chem 1999 45: 1708–1717

    CAS  PubMed  Google Scholar 

  4. Macedo A, Orfao A, Gonzalez M, Vidriales MB, Lopez-Berges MC, Martinez A, San Miguel JF . Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies Leukemia 1995 9: 993–998

    CAS  PubMed  Google Scholar 

  5. Macedo A, Orfao A, Martinez A, Vidriales MB, Valverde B, Lopez-Berges MC, San Miguel JF . Immunophenotype of c-kit cells in normal human bone marrow: implications for the detection of minimal residual disease in AML Br J Haematol 1995 89: 338–341

    Article  CAS  PubMed  Google Scholar 

  6. Macedo A, Orfao A, Ciudad J, Gonzalez M, Vidriales B, Lopez-Berges MC, Martinez A, Landolfi C, Canizo C, San Miguel JF . Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease Leukemia 1995 9: 1896–1901

    CAS  PubMed  Google Scholar 

  7. Venditti A, Buccisano F, Del Poeta G, Maurillo L, Tamburini A, Cox C, Battaglia A, Catalano G, Del Moro B, Cudillo L, Postorino M, Masi M, Amadori S . Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia Blood 2000 96: 3948–3952

    Article  CAS  PubMed  Google Scholar 

  8. Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, Landolfi C, Orfao A . Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease J Clin Pathol 1996 49: 15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW, O'Brien MC, Baron S, Deisseroth AB . Expression of unusual immunophenotype combinations in acute myelogenous leukemia Blood 1993 81: 3083–3090

    Article  CAS  PubMed  Google Scholar 

  10. Adriaansen HJ, Jacobs BC, Kappers-Klunne MC, Hahlen K, Hooijkaas H, van Dongen JJ . Detection of residual disease in AML patients by use of double immunological marker analysis for terminal deoxynucleotidyl transferase and myeloid markers Leukemia 1993 7: 472–481

    CAS  PubMed  Google Scholar 

  11. Engel H, Goodacre A, Keyhani A, Jiang S, Van NT, Kimmel M, Sanchez-Williams G, Andreeff M . Minimal residual disease in acute myelogenous leukaemia and myelodysplastic syndromes: a follow-up of patients in clinical remission Br J Haematol 1997 99: 64–75

    Article  CAS  PubMed  Google Scholar 

  12. San Miguel JF, Martinez A, Macedo A, Vidriales MB, Lopez-Berges C, Gonzalez M, Caballero D, Garcia-Marcos MA, Ramos F, Fernandez-Calvo J, Calmuntia MJ, Diaz-Mediavilla J, Orfao A . Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients Blood 1997 90: 2465–2470

    Article  CAS  PubMed  Google Scholar 

  13. Campana D, Coustan-Smith E, Janossy G . The immunologic detection of minimal residual disease in acute leukemia Blood 1990 76: 163–171

    Article  CAS  PubMed  Google Scholar 

  14. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, Sandlund JT, Rivera GK, Rubnitz JE, Ribeiro RC, Pui CH, Campana D . Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia Blood 2000 96: 2691–2696

    Article  CAS  PubMed  Google Scholar 

  15. Yin JAL, Tobal K . Detection of minimal residual disease in acute myeloid leukaemia: methodologies, clinical and biological significance Br J Haematol 1999 106: 578–590

    Article  CAS  PubMed  Google Scholar 

  16. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR− Blood 1998 92: 4325–4335

    Article  CAS  PubMed  Google Scholar 

  17. Mehrotra B, George TI, Kavanau K, Avet-Loiseau H, Moore D, Willman CL, Slovak ML, Atwater S, Head DR, Pallavicini MG . Cytogenetically aberrant cells in the stem cell compartment (CD34+lin−) in acute myeloid leukemia Blood 1995 86: 1139–1147

    CAS  PubMed  Google Scholar 

  18. Yin M, Silvestri FF, Banavali SD, Gopal V, Hulette BC, Kuvelkar RB, Young AN, Mayers G, Preisler HD . Clonogenic potential of myeloid leukaemia cells in vitro is restricted to leukaemia cells expressing the CD34 antigen Eur J Cancer 1993 29A: 2279–2283

    Article  CAS  PubMed  Google Scholar 

  19. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  20. Del Poeta G, Stasi R, Aronica G, Venditti A, Cox MC, Bruno A, Buccisano F, Masi M, Tribalto M, Amadori S, Papa G . Clinical relevance of P-glycoprotein expression in de novo acute myeloid leukemia Blood 1996 87: 1997–2004

    Article  CAS  PubMed  Google Scholar 

  21. van den Heuvel-Eibrink MM, van der Holt B, te BP, Pieters R, Schoester M, Lowenberg B, Sonneveld P . MDR 1 expression is an independent prognostic factor for response and survival in de novo acute myeloid leukaemia Br J Haematol 1997 99: 76–83

    Article  CAS  PubMed  Google Scholar 

  22. Nussler V, Pelka-Fleischer R, Zwierzina H, Nerl C, Beckert B, Gieseler F, Diem H, Ledderose G, Gullis E, Sauer H, Wilmanns W . P-glycoprotein expression in patients with acute leukemia – clinical relevance Leukemia 1996 10: (Suppl. 3) S23–S31

    PubMed  Google Scholar 

  23. Hegewisch-Becker S, Hossfeld DK . The MDR phenotype in hematologic malignancies: prognostic relevance and future perspectives Ann Hematol 1996 72: 105–117

    Article  CAS  PubMed  Google Scholar 

  24. Zhou DC, Zittoun R, Marie JP . Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia Leukemia 1995 9: 1661–1666

    CAS  PubMed  Google Scholar 

  25. Borg AG, Burgess R, Green LM, Scheper RJ, Liu YJ . P-glycoprotein and multidrug resistance-associated protein, but not lung resistance protein, lower the intracellular daunorubicin accumulation in acute myeloid leukaemic cells Br J Haematol 2000 108: 48–54

    Article  CAS  PubMed  Google Scholar 

  26. Legrand O, Perrot JY, Simonin G, Baudard M, Marie JP . JC-1: a very sensitive fluorescent probe to test Pgp activity in adult acute myeloid leukemia Blood 2001 97: 502–508

    Article  CAS  PubMed  Google Scholar 

  27. Takeshita A, Shinjo K, Ohnishi K, Ohno R . Expression of multidrug resistance P-glycoprotein in myeloid progenitor cells of different phenotype: comparison between normal bone marrow cells and leukaemia cells Br J Haematol 1996 93: 18–21

    Article  CAS  PubMed  Google Scholar 

  28. Sonneveld P, Wiemer E . Assays for the analysis of P-glycoprotein in acute myeloid leukemia and CD34 subsets of AML blasts Leukemia 1997 11: 1160–1165

    Article  CAS  PubMed  Google Scholar 

  29. Broxterman HJ, Sonneveld P, Feller N, Ossenkoppele GJ, Wahrer DC, Eekman CA, Schoester M, Lankelma J, Pinedo HM, Lowenberg B, Schuurhuis GJ . Quality control of multidrug resistance assays in adult acute leukemia: correlation between assays for P-glycoprotein expression and activity Blood 1996 87: 4809–4816

    Article  CAS  PubMed  Google Scholar 

  30. Feller N, Kuiper CM, Lankelma J, Ruhdal JK, Scheper RJ, Pinedo HM, Broxterman HJ . Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry Br J Cancer 1995 72: 543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broxterman HJ, Schuurhuis GJ, Lankelma J, Oberink JW, Eekman CA, Claessen AM, Hoekman K, Poot M, Pinedo HM . Highly sensitive and specific detection of P-glycoprotein function for haematological and solid tumour cells using a novel nucleic acid stain Br J Cancer 1997 76: 1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuurhuis GJ, Broxterman HJ, Ossenkoppele GJ, Baak JP, Eekman CA, Kuiper CM, Feller N, van Heijningen TH, Klumper E, Pieters R . Functional multidrug resistance phenotype associated with combined overexpression of Pgp/MDR1 and MRP together with 1-beta-D-arabinofuranosylcytosine sensitivity may predict clinical response in acute myeloid leukemia Clin Cancer Res 1995 1: 81–93

    CAS  PubMed  Google Scholar 

  33. Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie JP . Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia Blood 1999 94: 1046–1056

    Article  CAS  PubMed  Google Scholar 

  34. Legrand O, Zittoun R, Marie JP . Role of MRP1 in multidrug resistance in acute myeloid leukemia Leukemia 1999 13: 578–584

    Article  CAS  PubMed  Google Scholar 

  35. Hart SM, Ganeshaguru K, Hoffbrand AV, Prentice HG, Mehta AB . Expression of the multidrug resistance-associated protein (MRP) in acute leukaemia Leukemia 1994 8: 2163–2168

    CAS  PubMed  Google Scholar 

  36. Schneider E, Cowan KH, Bader H, Toomey S, Schwartz GN, Karp JE, Burke PJ, Kaufmann SH . Increased expression of the multidrug resistance-associated protein gene in relapsed acute leukemia Blood 1995 85: 186–193

    Article  CAS  PubMed  Google Scholar 

  37. Feller N, Broxterman HJ, Wahrer DC, Pinedo HM . ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion FEBS Lett 1995 368: 385–388

    Article  CAS  PubMed  Google Scholar 

  38. Legrand O, Simonin G, Perrot JY, Zittoun R, Marie JP . Pgp and MRP activities using calcein-AM are prognostic factors in adult acute myeloid leukemia patients Blood 1998 91: 4480–4488

    Article  CAS  PubMed  Google Scholar 

  39. Leith CP, Chen IM, Kopecky KJ, Appelbaum FR, Head DR, Godwin JE, Weick JK, Willman CL . Correlation of multidrug resistance (MDR1) protein expression with functional dye/drug efflux in acute myeloid leukemia by multiparameter flow cytometry: identification of discordant MDR−/efflux+ and MDR1+/efflux− cases Blood 1995 86: 2329–2342

    Article  CAS  PubMed  Google Scholar 

  40. van der Kolk DM, de Vries EG, Koning JA, van den Berg E, Muller M, Vellenga E . Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34+ peripheral blood cells Clin Cancer Res 1998 4: 1727–1736

    CAS  PubMed  Google Scholar 

  41. Schuurhuis GJ, Monnee-v Muijen M, Oberink JW, de Boer F, Ossenkoppele GJ, Broxterman HJ . Large populations of non-clonogenic early apoptotic CD34-positive cells are present in frozen–thawed peripheral blood stem cell transplants Bone Marrow Transplant 2001 27: 487–498

    Article  CAS  PubMed  Google Scholar 

  42. Egashira M, Kawamata N, Sugimoto K, Kaneko T, Oshimi K . P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833 Blood 1999 93: 599–606

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhary PM, Mechetner EB, Roninson IB . Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes Blood 1992 80: 2735–2739

    Article  CAS  PubMed  Google Scholar 

  44. Drach D, Zhao S, Drach J, Mahadevia R, Gattringer C, Huber H, Andreeff M . Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype Blood 1992 80: 2729–2734

    Article  CAS  PubMed  Google Scholar 

  45. Kratz-Albers K, Zuhlsdorp M, Leo R, Berdel WL, Buchner T, Serve H . Expression of a AC133, a novel stem cell marker, on human leukemic blasts lacking CD34− antigen and on a human CD34+ leukemic line: MUTZ-2 Blood 1998 92: 4485–4487

    Article  CAS  PubMed  Google Scholar 

  46. Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E, Reiffers J, Boisseau MR, Bernard P . Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia Leukemia 1997 11: 1878–1886

    Article  CAS  PubMed  Google Scholar 

  47. Broxterman HJ, Lankelma J, Pinedo HM, Eekman CA, Wahrer DC, Ossenkoppele GJ, Schuurhuis GJ . Theoretical and practical considerations for the measurement of P-glycoprotein function in acute myeloid leukemia Leukemia 1997 11: 1110–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Pol, M., Pater, J., Feller, N. et al. Functional characterization of minimal residual disease for P-glycoprotein and multidrug resistance protein activity in acute myeloid leukemia. Leukemia 15, 1554–1563 (2001). https://doi.org/10.1038/sj.leu.2402245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402245

Keywords

This article is cited by

Search

Quick links