Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biotechnical Methods Section (BTS)

Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro

Abstract

Dendritic cells (DC) play a key role in the initiation of primary immune response, and pilot clinical studies have demonstrated their ability to induce efficient antitumor immunity. However, the DC used in these clinical trials were generated with various serum sources and were poorly characterized. Obtaining fully characterized DC in controlled and reproducible culture conditions is thus of major interest. We demonstrate that X-VIVO 15 medium supplemented with 2% human albumin can be used to obtain DC. The phenotypic and functional characteristics of these clinical-grade DC were analyzed according to their differentiation stages. CD83immature DC, obtained in the presence of granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, were able to endocyte soluble antigens and internalize apoptotic tumor cells, and also expressed receptors for inflammatory chemokines. Tumor necrosis factor-α (TNF-α) induced irreversible DC maturation in association with a decreased ability to uptake antigens and an increased allostimulatory capacity. CD83+ mature DC became responsive to EBl1 ligand chemokine (ELC), a chemokine specifically expressed in secondary lymphoid organs. In addition, mature DC obtained with TNF-α produced IL-12 and some IL-10 in response to CD40 stimulation. In conclusion, we present well-defined culture conditions allowing the control of DC maturation for clinical or fundamental studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D . Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  2. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G . Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma J Exp Med 1999 190: 1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A . Phase I clinical trial: T cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen Prostate 1996 29: 371–380

    Article  CAS  PubMed  Google Scholar 

  4. Tjoa BA, Simmons SJ, Bowes VA, Ragde H, Rogers M, Elgamal A, Kenny GM, Cobb OE, Ireton RC, Troychak MJ, Salgaller ML, Boynton AL, Murphy GP . Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides Prostate 1998 36: 39–44

    Article  CAS  PubMed  Google Scholar 

  5. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R . Vaccination of patients with B cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  6. Holtl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M . CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer (letter) Lancet 1998 352: 1358

    Article  CAS  PubMed  Google Scholar 

  7. Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M . Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells J Urol 1999 161: 777–782

    Article  CAS  PubMed  Google Scholar 

  8. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R . Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study Blood 1999 93: 2411–2419

    Article  CAS  PubMed  Google Scholar 

  9. Hart DNJ . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  11. Fanger NA, Voigtlaender D, Liu C, Swink S, Wardwell K, Fisher J, Graziano RF, Pfefferkorn LC, Guyre PM . Characterization of expression, cytokine regulation, and effector function of the high affinity IgG receptor Fc gamma RI (CD64) expressed on human blood dendritic cells J Immunol 1997 158: 3090–3098

    CAS  PubMed  Google Scholar 

  12. Fanger NA, Wardwell K, Shen L, Tedder TF, Guyre PM . Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells J Immunol 1996 157: 541–548

    CAS  PubMed  Google Scholar 

  13. Sallusto F, Cella M, Danieli C, Lanzavecchia A . Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products J Exp Med 1995 182: 389–400

    Article  CAS  PubMed  Google Scholar 

  14. Albert ML, Pearce SFA, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N . Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes J Exp Med 1998 188: 1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sozzani S, Allavena P, D'Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A . Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties J Immunol 1998 161: 1083–1086

    CAS  PubMed  Google Scholar 

  16. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A . Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation Eur J Immunol 1998 28: 2760–2769

    Article  CAS  PubMed  Google Scholar 

  17. Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA . Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation Eur J Immunol 1998 28: 4114–4122

    Article  CAS  PubMed  Google Scholar 

  18. Chan VW, Kothakota S, Rohan MC, Panganiban-Lustan L, Gardner JP, Wachowicz MS, Winter JA, Williams LT . Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells Blood 1999 93: 3610–3616

    Article  CAS  PubMed  Google Scholar 

  19. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G . Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability J Immunol Methods 1996 196: 137–151

    Article  CAS  PubMed  Google Scholar 

  20. Reddy A, Sapp M, Feldman M, Subklewe M, Bhardwaj N . A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells Blood 1997 90: 3640–3646

    Article  CAS  PubMed  Google Scholar 

  21. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH . Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions Eur J Immunol 1997 27: 3135–3142

    Article  CAS  PubMed  Google Scholar 

  22. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G . Generation of large number of fully mature and stable dendritic cells from leukapheresis products for clinical application J Immunol Methods 1999 223: 1–15

    Article  CAS  PubMed  Google Scholar 

  23. Osman Y, Takahashi M, Zheng Z, Koike T, Toba K, Liu A, Furukawa T, Aoki S, Aizawa Y . Generation of bcr-abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients Leukemia 1999 13: 166–174

    Article  CAS  PubMed  Google Scholar 

  24. Soruri A, Fayyazi A, Gieseler R, Schlott T, Runger TM, Neumann C, Peters JH . Specific autologous anti-melanoma T cell response in vitro using monocyte-derived dendritic cells Immunobiology 1998 198: 527–538

    Article  CAS  PubMed  Google Scholar 

  25. Anton D, Dabadghao S, Palucka K, Holm G, Yi Q . Generation of dendritic cells from peripheral blood adherent cells in medium with human serum Scand J Immunol 1998 47: 116–121

    Article  CAS  PubMed  Google Scholar 

  26. Kim CJ, Prevette T, Cormier J, Overwijk W, Roden M, Restifo NP, Rosenberg SA, Marincola FM . Dendritic cells infected with poxviruses encoding MART-1/Melan A sensitize T lymphocytes in vitro J Immunother 1997 20: 276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rieser C, Bock G, Klocker H, Bartsch G, Thurnher M . Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production J Exp Med 1997 186: 1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Apostolopoulos V, Osinski C, McKenzie IF . MUC1 cross-reactive Gal alpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral Nature Med 1998 4: 315–320

    Article  CAS  PubMed  Google Scholar 

  29. Abdel-Wahab Z, DeMatos P, Hester D, Dong XD, Seigler HF . Human dendritic cells, pulsed with either melanoma tumor cell lysates or the gp100 peptide(280–288), induce pairs of T cell cultures with similar phenotype and lytic activity Cell Immunol 1998 186: 63–74

    Article  CAS  PubMed  Google Scholar 

  30. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK . Migration of human dendritic cells after injection in patients with metastatic malignancies Cancer Res 1999 59: 56–58

    CAS  PubMed  Google Scholar 

  31. Tarte K, Olsen SJ, Lu ZY, Legouffe E, Rossi JF, Chang Y, Klein B . Clinical grade functional dendritic cells from patients with multiple myeloma are not infected with Kaposi's sarcoma-associated herpesvirus Blood 1998 91: 1852–1857

    Article  CAS  PubMed  Google Scholar 

  32. Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA . Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA Int J Cancer 1999 82: 121–124

    Article  CAS  PubMed  Google Scholar 

  33. Chikamatsu K, Nakano K, Storkus WJ, Appella E, Lotze MT, Whiteside TL, Deleo AB . Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous dendritic cells Clin Cancer Res 1999 5: 1281–1288

    CAS  PubMed  Google Scholar 

  34. Tuting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluff CL, Jr, Wagner SN, Van der Bruggen P, Baar J, Lotze MT, Storkus WJ . Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1- biasing cytokines IL-12 and IFN-alpha J Immunol 1998 160: 1139–1147

    CAS  PubMed  Google Scholar 

  35. Tarte K, Lu ZY, Fiol G, Legouffe E, Rossi JF, Klein B . Generation of virtually pure and potentially proliferating dendritic cells from non-CD34 apheresis cells from patients with multiple myeloma Blood 1997 90: 3482–3495

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M, Boiron JM, Bataille R, Klein B . Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma Blood 1994 83: 3654–3663

    Article  CAS  PubMed  Google Scholar 

  37. Kalinski P, Schuitemaker JHN, Hilkens CMU, Wierenga EA, Kapsenberg ML . Final maturation of dendritic cells is associated with impaired responsiveness to IFN-g and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells J Immunol 1999 162: 3231–3236

    CAS  PubMed  Google Scholar 

  38. Snijders A, Kalinski P, Hilkens CMU, Kapsenberg ML . High-level IL-12 production by human dendritic cells requires 2 signals Int Immunol 1998 10: 1593–1598

    Article  CAS  PubMed  Google Scholar 

  39. Toungouz M, Quinet C, Thille E, Fourez S, Pradier O, Delville JP, Velu T, Lambermont M . Generation of immature autologous clinical grade dendritic cells for vaccination of cancer patients Cytotherapy 1999 6: 447–453

    Article  Google Scholar 

  40. Tarte K, Klein B . Dendritic-based vaccine: a promising approach for cancer immunotherapy Leukemia 1999 13: 653–664

    Article  CAS  PubMed  Google Scholar 

  41. Fujii S, Fujimoto K, Shimizu K, Ezaki T, Kawano F, Takatsuki K, Kawakita M, Matsuno K . Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients Cancer Res 1999 59: 2150–2158

    CAS  PubMed  Google Scholar 

  42. Nazaruk RA, Rochford R, Hobbs MV, Cannon MJ . Functional diversity of the CD8+ T cell response to Epstein–Barr virus (EBV): implication for the pathogenesis of EBV-associated lymphoproliferative disorders Blood 1998 91: 3875–3883

    Article  CAS  PubMed  Google Scholar 

  43. Carter L, Dutton RW . Type 1 and type 2: a fundamental dichotomy for all T cell subsets Curr Opin Immunol 1996 8: 336–342

    Article  CAS  PubMed  Google Scholar 

  44. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH . Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells Blood 1999 93: 1634–1642

    Article  CAS  PubMed  Google Scholar 

  45. Kalinski P, Schuitemaker JHN, Hilkens CMU, Kapsenberg ML . Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation J Immunol 1998 161: 2804–2809

    CAS  PubMed  Google Scholar 

  46. Cella M, Scheidegger D, Palmer Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation J Exp Med 1996 184: 747–752

    Article  CAS  PubMed  Google Scholar 

  47. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ . Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    Article  CAS  PubMed  Google Scholar 

  48. Zhou LJ, Tedder TF . A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells Blood 1995 86: 3295–3301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer, ‘Equipe labellisée’ (Paris, France).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarte, K., Fiol, G., Rossi, JF. et al. Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia 14, 2182–2192 (2000). https://doi.org/10.1038/sj.leu.2401925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401925

Keywords

This article is cited by

Search

Quick links