Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CD34: To select or not to select? That is the question

Abstract

Recent evidence suggests that expression of CD34 on the cell membrane does not always correlate with stem cell activity. In the mouse, there is a highly quiescent population of stem cells that lacks CD34 expression, but has full reconstituting capacity. The current review addresses the discovery of a similar population of dormant CD34-negative human hematopoietic stem cells. This information casts some uncertainty on the benefits of CD34+ cell isolation for stem cell transplantation, until more is known about the novel CD34-negative stem cell population. Methods designed to achieve removal of specific mature blood cell lineages might prove to be most advantageous in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Laurenti L, Sica S, Sor F, Piccirillo N, Ortu La Barbera E, Chiusolo P, Salutari P, Rumi C, Rutella S, Leone G . Long-term immune recovery after immunoselected CD34+ PBPCT and unselected PBPCT: a case-control study Haematologica 1999 84: 1100–1103

    CAS  PubMed  Google Scholar 

  2. Gandhi M, Jestice H, Scott M, Bloxham D, Bass G, Craig J, Marcus R . A comparison of CD34+ cell selected and unselected autologous peripheral blood stem cell transplantation for multiple myeloma: a case controlled analysis Bone Marrow Transplant 1999 24: 369–375

    Article  CAS  PubMed  Google Scholar 

  3. Dreger P, Viehmann K, von Neuhoff N, Glaubitz T, Petzoldt O, Glass B, Uharek L, Rautenberg P, Suttorp M, Mills B, Mitsky P, Schmitz N . Autografting of highly purified peripheral blood progenitor cells following myeloablative therapy in patients with lymphoma: a prospective study of the long-term effects on tumor eradication, reconstitution of hematopoiesis and immune recovery Bone Marrow Transplant 1999 24: 153–161

    Article  CAS  PubMed  Google Scholar 

  4. Nieto Y, Cagnoni PJ, Shpall EJ, Matthes S, Baron A, Jones RB, Bearman SI . Phase II trial of high-dose chemotherapy with autologous stem cell transplant for stage IV breast cancer with minimal metastatic disease Clin Cancer Res 1999 5: 1731–1737

    CAS  PubMed  Google Scholar 

  5. Martinez C, Urbano-Ispizua A, Rozman C, Marin P, Rovira M, Sierra J, Montfort N, Carreras E, Montserrat E . Immune reconstitution following allogeneic peripheral blood progenitor cell transplantation: comparison of recipients of positive CD34+ selected grafts with recipients of unmanipulated grafts Exp Hematol 1999 27: 561–568

    Article  CAS  PubMed  Google Scholar 

  6. Burt RK, Traynor AE, Pope R, Schroeder J, Cohen B, Karlin KH, Lobeck L, Goolsby C, Rowlings P, Davis FA, Stefoski D, Terry C, Keever-Taylor C, Rosen S, Vesole D, Fishman M, Brush M, Mujias S, Villa M, Burns WH . Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation Blood 1998 92: 3505–3514

    CAS  PubMed  Google Scholar 

  7. Shpall EJ, LeMaistre CF, Holland K, Ball E, Jones RB, Saral R, Jacobs C, Heimfeld S, Berenson R, Champlin R . A prospective randomized trial of buffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy Blood 1997 90: 4313–4320

    CAS  PubMed  Google Scholar 

  8. Shpall EJ, Champlin R, Glaspy JA . Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery Biol Blood Marrow Transplant 1998 4: 84–92

    Article  CAS  PubMed  Google Scholar 

  9. Schiller G, Vescio R, Freytes C, Spitzer G, Lee M, Wu CH, Cao J, Lee JC, Lichtenstein A, Lill M, Berenson R, Berenson J . Autologous CD34-selected blood progenitor cell transplants for patients with advanced multiple myeloma (see comments) Bone Marrow Transplant 1998 21: 141–145

    Article  CAS  PubMed  Google Scholar 

  10. Peters C, Matthes-Martin S, Fritsch G, Holter W, Lion T, Witt V, Hocker P, Fischer G, Dieckmann K, Handgretinger R, Klingebiel T, Gadner H . Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment Leukemia 1999 13: 2070–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34− low/negative hematopoietic stem cell Science 1996 273: 242–245

    Article  CAS  PubMed  Google Scholar 

  12. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID− repopulating activity (see comments) Nature Med 1998 4: 1038–1045

    Article  CAS  PubMed  Google Scholar 

  13. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med 1996 183: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  14. Jackson KA, Mi T, Goodell MA . Hematopoietic potential of stem cells isolated from murine skeletal muscle (see comments) Proc Natl Acad Sci USA 1999 96: 14482–14486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP . Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nature Med 1997 3: 1337–1345

    Article  CAS  PubMed  Google Scholar 

  16. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells (see comments) Blood 1999 94: 2548–2554

    CAS  PubMed  Google Scholar 

  17. Hao QL, Thiemann FT, Petersen D, Smogorzewska EM, Crooks GM . Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population Blood 1996 88: 3306–3313

    CAS  PubMed  Google Scholar 

  18. Shah AJ, Smogorzewska EM, Hannum C, Crooks GM . Flt3 ligand induces proliferation of quiescent human bone marrow CD34+ CD38− cells and maintains progenitor cells in vitro Blood 1996 87: 3563–3570

    CAS  PubMed  Google Scholar 

  19. Dao MA, Shah AJ, Crooks GM, Nolta JA . Engraftment and retroviral marking of CD34+ and CD34+CD38− human hematopoietic progenitors assessed in immune-deficient mice Blood 1998 91: 1243–1255

    CAS  PubMed  Google Scholar 

  20. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G, Haas DL, Xu D, Stripecke R, Naldini L, Kohn DB, Crooks GM . Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors Proc Natl Acad Sci USA 1999 96: 2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jordan CT, Yamasaki G, Minamoto D . High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations Exp Hematol 1996 24: 1347–1355

    CAS  PubMed  Google Scholar 

  22. Landberg G, Roos G . Proliferating cell nuclear antigen and Ki-67 antigen expression in human hematopoietic cells during growth stimulation and differentiation Cell Prolif 1993 26: 427–437

    Article  CAS  PubMed  Google Scholar 

  23. Dao MA, Taylor N, Nolta JA . Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells Proc Natl Acad Sci USA 1998 95: 13006–13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, Sharkis SJ, May WS . Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells Blood 1994 84: 691–701

    CAS  PubMed  Google Scholar 

  25. Krause DS, Fackler MJ, Civin CI, May WS . CD34: structure, biology, and clinical utility (see comments) Blood 1996 86: 1–13

    Google Scholar 

  26. Fackler MJ, Civin CI, May WS . Up-regulation of surface CD34 is associated with protein kinase C-mediated hyperphosphorylation of CD34 J Biol Chem 1992 267: 17540–17546

    CAS  PubMed  Google Scholar 

  27. Dao MA, Nolta JA . Immunodeficient mice as models of human hematopoietic stem cell engraftment Curr Opin Immunol 1999 11: 532–537

    Article  CAS  PubMed  Google Scholar 

  28. Dao MA, Hashino K, Kato I, Nolta JA . Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells Blood 1998 92: 4612–4621

    CAS  PubMed  Google Scholar 

  29. Dao MA, Nolta JA . Inclusion of IL-3 during retrovirally mediated transduction on stromal support does not increase the extent of gene transfer into long-term engrafting human hematopoietic progenitors Cytokin Cell Mol Ther 1997 3: 81–89

    CAS  Google Scholar 

  30. Nolta JA, Hanley MB, Kohn DB . Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors Blood 1994 83: 3041–3051

    CAS  PubMed  Google Scholar 

  31. Nolta JA, Dao MA, Wells S, Smogorzewska EM, Kohn DB . Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice Proc Natl Acad Sci USA 1996 93: 2414–2419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dao MA, Hannum CH, Kohn DB, Nolta JA . FLT3 ligand preserves the ability of human CD34+ progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex vivo retroviral-mediated transduction Blood 1997 89: 446–456

    CAS  PubMed  Google Scholar 

  33. Dao M, Nolta J . Molecular control of cell cycle progression in primary human hematopoietic stem cells: methods to increase levels of retroviral-mediated transduction Leukemia 1999 13: 1473–1480

    Article  CAS  PubMed  Google Scholar 

  34. Goodell MA . Introduction: focus on hematology. CD34(+) or CD34(−): does it really matter? (Comment) Blood 1999 94: 2545–2547

    CAS  PubMed  Google Scholar 

  35. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells (see comments) Exp Hematol 1998 26: 353–360

    CAS  PubMed  Google Scholar 

  36. Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M . Engraftment and multilineage expression of human bone marrow CD34− cells in vivo Ann NY Acad Sci 1999 872: 220–231

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura Y, Chargui AK, Kawada H, Sato T, Tsuji T, Hotta T, Kato S . Ex vivo generation of CD34+ cells from CD34− hematopoietic cells Blood 1999 94: 4053–4059

    CAS  PubMed  Google Scholar 

  38. Fujisaki T, Berger MG, Rose-John S, Eaves CJ . Rapid differentiation of a rare subset of adult human lin(−)CD34(−)CD38(−) cells stimulated by multiple growth factors in vitro Blood 1999 94: 1926–1932

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in Dr Nolta's laboratory is supported by the NIH NHLBI (SCOR #P50-HL54850), NIH NIDDK (RO1 DK 53041), The John Connell Gene Therapy Foundation, and a Career Development Award from the CHLA Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JA Nolta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dao, M., Nolta, J. CD34: To select or not to select? That is the question. Leukemia 14, 773–776 (2000). https://doi.org/10.1038/sj.leu.2401781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401781

Keywords

This article is cited by

Search

Quick links