Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Rapid and reliable detection of N-ras mutations in acute lymphoblastic leukemia by melting curve analysis using LightCycler technology

Abstract

We applied a new strategy for the detection of N-ras gene mutations based on LightCycler technology. We designed two sets of amplimers and internal hybridization probes representing N-ras codons 12/13 and codon 61, respectively. Genomic DNAs from 134 childhood acute lymphoblastic leukemia (ALL) patients (83 common ALL, nine pre-pre-B ALL, 19 pre-B ALL, 23 T-ALL) were amplified, followed by the analysis of the melting temperatures of the PCR products on the LightCycler. PCR products exhibiting an abnormal melting characteristic were directly sequenced. Sequence analyses unravelled nucleotide substitutions at codon 12 in 10 patients, at codon 13 in three, and at codon 61 in one case. The incidence of N-rasmutations (10%) is compatible with previous reports. The LightCycler technology facilitates the rapid analysis of other genes exhibiting hot spot mutations in human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bos JL . Ras oncogenes in human cancer: a review Cancer Res 1989 49: 4682–4689

    CAS  Google Scholar 

  2. Rodenhuis S, Bos JL, Slater RM, Behrendt H, van ’t Veer M, Smets LA . Absence of oncogene amplifications and occasional activation of N-ras in lymphoblastic leukemia of childhood Blood 1986 67: 1698–1704

    CAS  PubMed  Google Scholar 

  3. Janssen JWG, Steenvoorden AC, Lyons J, Anger B, Böhlke JU, Bos JL, Seliger H, Bartram CR . RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes Proc Natl Acad Sci USA 1987 84: 9228–9232

    Article  CAS  Google Scholar 

  4. Neri A, Knowles DM, Greco A, McCormick F, Dalla-Favera R . Analysis of RAS oncogene mutations in human lymphoid malignancies Proc Natl Acad Sci USA 1988 85: 9268–9272

    Article  CAS  Google Scholar 

  5. Bartram CR, Ludwig WD, Hiddemann W, Lyons J, Buschle M, Ritter J, Harbott J, Fröhlich A, Janssen JWG . Acute myeloid leukemia: analysis of ras gene mutations and clonality defined by polymorphic X-linked loci Leukemia 1989 3: 247–256

    CAS  PubMed  Google Scholar 

  6. Bar-Eli M, Ahuja H, Foti A, Cline MJ . N-RAS mutations in T-cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation Br J Haematol 1989 72: 36–39

    Article  CAS  Google Scholar 

  7. Lübbert M, Mirro J, Miller CW, Kahan J, Isaac G, Kitchingman G, Mertelsmann R, Herrmann F, McCormick F, Koeffler HP . N-ras gene point mutation in childhood acute lymphoblastic leukemia correlate with a poor prognosis Blood 1990 75: 1163–1169

    PubMed  Google Scholar 

  8. Terada N, Miyoschi J, Kawa-Ha K, Sasai H, Orita S, Yumura-Yagi K, Hara J, Fujinami A, Kakunaga T . Alteration of N-ras gene mutation after relapse in acute lymphoblastic leukemia Blood 1990 75: 453–457

    CAS  PubMed  Google Scholar 

  9. Ahuja HG, Foti A, Bar-Eli M, Cline MJ . The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing Blood 1990 75: 1684–1690

    CAS  PubMed  Google Scholar 

  10. Todd AV, Iland HJ . Rapid screening of mutant N-ras alleles by analysis of PCR-induced restriction sites: allele specific restriction analysis (ASRA) Leuk Lymphoma 1991 3: 293–300

    Article  CAS  Google Scholar 

  11. Bashey A, Gill R, Levi S, Farr CJ, Clutterbuck R, Miller JL, Pragnell IB, Marschall CJ . Mutational activation of the N-ras oncogene assessed in primary clonogenic culture of acute myeloid leukemia (AML): implication for the role of N-ras mutation in AML pathogenesis Blood 1992 79: 981–989

    CAS  PubMed  Google Scholar 

  12. Yokota S, Nakao M, Horiike S, Seriu T, Iwai T, Kaneko H, Azuma H, Oka T, Takeda T, Watanabe A, Kikuta A, Asami K, Sekine I, Matsushita T, Tsuhciya T, Mimaya J, Koizumi S, Miyake M, Nishikawa K, Takaue Y, Kawano Y, Iwai A, Ishida Y, Matsumoto K, Fujimoto T . Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases Int J Hematol 1998 67: 379–387

    Article  CAS  Google Scholar 

  13. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R . Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia Blood 1999 93: 3074–3080

    CAS  PubMed  Google Scholar 

  14. Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA, Mayer RJ, Ball ED, Wurster-Hill D, Bloomfield CD, Liu ET . Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia Blood 1994 83: 1603–1611

    CAS  PubMed  Google Scholar 

  15. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ . The LightCycler: a microvolume multisample fluorimetrer with rapid temperature control Biotechniques 1997 22: 176–181

    Article  CAS  Google Scholar 

  16. Ririe KM, Rasmussen RP, Wittwer CT . Product differentiation by analysis of DNA melting curves during the polymerase chain reaction Anal Biochem 1997 245: 154–160

    Article  CAS  Google Scholar 

  17. Caplin BE, Rasmussen RP, Bernard PS, Wittwer CT . LightCycler hybridization probes Biochemica 1999 1: 5–8

    Google Scholar 

  18. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer D, Odenwald E, Ritter J, Mann G, Welte K, Gadner H, Riehm H . Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86 Blood 1994 84: 3122–3133

    CAS  PubMed  Google Scholar 

  19. van Dongen JJ, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  Google Scholar 

  20. Janssen JWG, Bartram CR . Silent mutation at codon 15 interferes with the detection of a mutated N-ras codon 12 allele by oligonucleotide hybridization Leukemia 1989 3: 235

    CAS  PubMed  Google Scholar 

  21. Cane PA, Cook P, Ratcliffe D, Mutimer D, Pillay D . Use of real-time PCR and fluorimetry to detect lamivudine resistance-associated mutations in hepatitis B virus Antimicrob Agents Chemother 1999 43: 1600–1608

    Article  CAS  Google Scholar 

  22. Nauck M, Wieland H, Marz W . Rapid, homogeneous genotyping of the 4G/5G polymorphism in the promoter region of the PAII gene by fluorescence resonance energy transfer and probe melting curves Clin Chem 1999 45: 1141–1147

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M Nakao is the recipient of a fellowship from the Alexander von Humboldt-Stiftung. We gratefully acknowledge the continuous support of the BFM study Group.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakao, M., Janssen, J., Seriu, T. et al. Rapid and reliable detection of N-ras mutations in acute lymphoblastic leukemia by melting curve analysis using LightCycler technology. Leukemia 14, 312–315 (2000). https://doi.org/10.1038/sj.leu.2401645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401645

Keywords

This article is cited by

Search

Quick links