Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the stem cell niche: squeezing blood from bones

Abstract

During human development, stem cells establish themselves in specific anatomic locations or niches. The niche harbors the stem cells, and regulates how stem cells proliferate. The interaction between stem cells and their niche affects stem cell function, and offers an opportunity to improve the marrow microenvironment. Osteoblasts produce hematopoietic growth factors and are activated by parathyroid hormone (PTH). A calcium sensing receptor, expressed by hematopoietic stem cells, regulates the niche and can be targeted to increase stem cell numbers. Therefore, drugs that affect osteoblast function or target calcium receptors may be useful for stem cell mobilization and engraftment. In this review, the biology of the stem cell niche and the potential therapeutic manipulations of the stem cell niche are reviewed. PTH is in clinical trials for patients who have not mobilized autologous stem cells well. The limiting cell numbers for adult cord blood transplantation increase the risk of infection, and PTH is currently in a clinical trial following cord blood transplantation in an effort to improve engraftment and immune reconstitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Xie T, Spradling AC . A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000; 290: 328–330.

    Article  CAS  Google Scholar 

  2. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    Article  CAS  Google Scholar 

  3. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201: 1781–1791.

    Article  CAS  Google Scholar 

  4. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106: 1232–1239.

    Article  CAS  Google Scholar 

  5. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznasnsky MC et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599–603.

    Article  CAS  Google Scholar 

  6. Lord BI . The architecture of bone marrow cell populations. Int J Cell Cloning 1990; 8: 317–331.

    Article  CAS  Google Scholar 

  7. Taichman RS, Emerson SG . Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 1994; 179: 1677–1682.

    Article  CAS  Google Scholar 

  8. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  PubMed  Google Scholar 

  9. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  Google Scholar 

  10. Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannettti A, Saxton JM et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 2001; 107: 277–286.

    Article  CAS  Google Scholar 

  11. Varnum-Finney B, Brashem-Stein C, Bernstein ID . Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003; 101: 1784–1789.

    Article  CAS  Google Scholar 

  12. Lindsell CE, Shawber CJ, Boulter J, Weinmaster G . Jagged: a mammalian ligand that activates Notch1. Cell 1995; 80: 909–917.

    Article  CAS  Google Scholar 

  13. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99: 2369–2378.

    Article  CAS  Google Scholar 

  14. Christensen JL, Weissman IL . Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 2001; 98: 14541–14546.

    Article  CAS  Google Scholar 

  15. Van Os R, Robinson S, Sheridan T, Mauch PM . Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal. Stem Cells 2000; 18: 120–127.

    Article  CAS  Google Scholar 

  16. El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exper Hematol 1998; 26: 110–116.

    CAS  Google Scholar 

  17. Reina E, Genrich K, Moadsiri A, Bartholomew A . Manipulation of the bone marrow microenvironment with low dose parathyroid hormone pulse therapy increases hematopoietic stem cell engraftment in non-human primates. World Transplant Congress 2006; 455a.

  18. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM . The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 2003; 349: 1216–1226.

    Article  CAS  Google Scholar 

  19. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003; 349: 1207–1215.

    Article  CAS  Google Scholar 

  20. Robinson JA, Susulic B, Liu YP, Taylor C, Hardenburg J, Gironda V et al. Identification of a PTH regulated gene selectively induced in vivo during PTH-mediated bone formation. J Cell Biochem 2006; 98: 1203–1220.

    Article  CAS  Google Scholar 

  21. Crandall C . Parathyroid hormone for the treatment of osteoporosis. Arch Intern Med 2002; 162: 2297–2309.

    Article  CAS  Google Scholar 

  22. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344: 1434–1441.

    Article  CAS  Google Scholar 

  23. McClung M . Parathyroid for the treatment of osteoporosis. Obstet Gynecol Survey 2004; 59: 826–832.

    Article  Google Scholar 

  24. Vose JM, Sharp G, Chan WC, Nichols C, Loh K, Inwards D et al. Autologous transplantation for aggressive non-Hodgkins's lymphoma: results of a randomized trial evaluating graft source and minimal residual disease. J Clin Oncol 2002; 20: 2344–2352.

    Article  Google Scholar 

  25. Fu P, Bagai RK, Meyerson H, Kane D, Fox RM, Creger RJ et al. Pre-mobilization therapy blood CD34+ cell count predicts the likelihood of successful hematopoietic stem cell mobilization. Bone Marrow Transplant 2006; 38: 189–196.

    Article  CAS  Google Scholar 

  26. Carlo-Stella C, Di Nicola M, Milani R, Guidetti A, Magni M, Milanesi M et al. Use of granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+ cells in poor mobilizers. Blood 2004; 104: 3287–3295.

    Article  Google Scholar 

  27. Goterris R, Hernandez-Boluda JC, Teruel A, Gomez C, Lis MJ, Terol MJ et al. Impact of different strategies of second-line stem cell harvest on the outcomes of autologous transplantation in poor peripheral blood stem cell mobilizers. Bone Marrow Transplant 2005; 36: 847–853.

    Article  CAS  Google Scholar 

  28. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD 3100 to patients with multiple myeloma and non Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    Article  CAS  Google Scholar 

  29. Ballen KK, Shpall EJ, Avigan D, Yeap B, McAfee S, Dey BR et al. Parathyroid hormone may improve autologous stem cell mobilization via the stem cell niche. Blood 2005; 106: 1968a.

    Google Scholar 

  30. Ballen KK . New trends in umbilical cord blood transplantation. Blood 2005; 105: 3786–3792.

    Article  CAS  Google Scholar 

  31. Barker JN, Krepski TP, DeFor TE, Davies SM, Wagner JE, Weisdorf D . Searching for unrelated donor hematopoietic stem cells: availability and speed of umbilical cord blood vs bone marrow. Biol Blood Marrow Transplant 2002; 8: 251–260.

    Article  Google Scholar 

  32. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004; 351: 2265–2275.

    Article  CAS  Google Scholar 

  33. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE . Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood after reduced intensity conditioning. Blood 2003; 105: 1343–1347.

    Article  Google Scholar 

  34. Barker JN, Weisdorf DJ, Defor TE, Blazar BR, McGlave PB, Miller JS et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105: 1343–1347.

    Article  CAS  Google Scholar 

  35. Ballen KK, Spitzer TR, Yeap B, McAfee S, Dey BR, Attar E et al. Double unrelated reduced intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13: 82–89.

    Article  CAS  Google Scholar 

  36. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005; 66: 45–54.

    Article  CAS  Google Scholar 

  37. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35: 2390–2395.

    Article  Google Scholar 

  38. Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA . A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci USA 2002; 99: 13061–13066.

    Article  CAS  Google Scholar 

  39. Koch H, Jadlowiec JA, Campbell PG . Insulin-like growth factor I induces early osteoblasts gene expression in human mesenchymal stem cells. Stem Cells Dev 2005; 14: 621–631.

    Article  CAS  Google Scholar 

  40. Sammons J, Ahmed N, El-Sheemy M, Hassan HT . The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D(3). Stem Cells Dev 2004; 13: 273–280.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr Gregor Adams for preparation of figures and Drs Joseph Antin, Henry Kronenberg, David Scadden and Thomas Spitzer for helpful discussions and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ballen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballen, K. Targeting the stem cell niche: squeezing blood from bones. Bone Marrow Transplant 39, 655–660 (2007). https://doi.org/10.1038/sj.bmt.1705651

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705651

Keywords

This article is cited by

Search

Quick links