Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

T cell regeneration in pediatric allogeneic stem cell transplantation

Abstract

Delayed and/or insufficient T cell recovery post hematopoietic stem cell transplantation (HSCT) leads to an increased risk of morbidity and mortality. We evaluated thymic function and its association with T cell regeneration post HSCT and identified factors involved in the process among pediatric stem cell transplant recipients. T cell regeneration in 66 pediatric patients was prospectively followed by naive T cell phenotyping, measuring of T cell receptor excision circles (TRECs) and expression of Foxp3 by regulatory T cells for the first 18 months post HSCT. TRECs were lower pre-HSCT in children with a malignant than non-malignant primary disease or immunosuppressed controls (P=0.001). Naive T lymphocyte reconstitution and thymic recovery were slow in the recipients of allogeneic stem cell grafts post HSCT. Infections caused by herpesviruses had a prognostic impact on mortality. Children with low TRECs had a high mortality (P=0.05) and low TRECs were also associated with extensive chronic graft-versus-host disease from 6 months onwards. Low amount of Foxp3 pre-HSCT was associated with an increased mortality post HSCT (P=0.03). Our study indicates an association between impaired T cell regeneration and thymic dysfunction and the clinical post transplant complications in pediatric allogeneic stem cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R . The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transplant 1995; 1: 18–23.

    CAS  PubMed  Google Scholar 

  2. Small TN, Avigan D, Dupont B, Smith K, Black P, Heller G et al. Immune reconstitution following T cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biol Blood Marrow Transplant 1997; 3: 65–75.

    CAS  PubMed  Google Scholar 

  3. Storek J, Gooley T, Witherspoon RP, Sullivan KM, Storb R . Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4T cell counts. Am J Hematol 1997; 54: 131–138.

    Article  CAS  Google Scholar 

  4. Balduzzi A, Gooley T, Anasetti C, Sanders JE, Martin PJ, Petersdorf EW et al. Unrelated donor marrow transplantation in children. Blood 1995; 86: 3247–3256.

    CAS  PubMed  Google Scholar 

  5. Ochs L, Shu XO, Miller J, Enright H, Wagner J, Filipovich A et al. Late infections after allogeneic bone marrow transplantations: comparison of incidence in related and unrelated donor transplant recipients. Blood 1995; 86: 3979–3986.

    CAS  PubMed  Google Scholar 

  6. Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE . T cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 1993; 82: 2585–2594.

    CAS  PubMed  Google Scholar 

  7. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149.

    Article  CAS  Google Scholar 

  8. Mackall CL, Hakim FT, Gress RE . T cell regeneration: all repertoires are not created equal. Immunol Today 1997; 18: 245–251.

    Article  CAS  Google Scholar 

  9. Mackall CL, Gress RE . Pathways of T cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol Rev 1997; 157: 61–72.

    Article  CAS  Google Scholar 

  10. Heitger A, Neu N, Kern H, Panzer-Grumayer ER, Greinix H, Nachbaur D et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 1997; 90: 850–857.

    CAS  PubMed  Google Scholar 

  11. Mackall CL, Bare CV, Granger LA, Sharrow SO, Titus JA, Gress RE . Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 1996; 156: 4609–4616.

    CAS  PubMed  Google Scholar 

  12. Chung B, Barbara-Burnham L, Barsky L, Weinberg K . Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood 2001; 98: 1601–1606.

    Article  CAS  Google Scholar 

  13. Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25 high regulatory T cells. Blood 2004; 103: 2410–2416.

    Article  CAS  Google Scholar 

  14. Hazenberg MD, Otto SA, de Pauw ES, Roelofs H, Fibbe WE, Hamann D et al. T cell receptor excision circle and T cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 2002; 99: 3449–3453.

    Article  CAS  Google Scholar 

  15. Lewin SR, Heller G, Zhang L, Rodrigues E, Skulsky E, van den Brink MR et al. Direct evidence for new T cell generation by patients after either T cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood 2002; 100: 2235–2242.

    CAS  PubMed  Google Scholar 

  16. Weinberg K, Blazar BR, Wagner JE, Agura E, Hill BJ, Smogorzewska M et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood 2001; 97: 1458–1466.

    Article  CAS  Google Scholar 

  17. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    Article  CAS  Google Scholar 

  18. Storek J, Joseph A, Dawson MA, Douek DC, Storer B, Maloney DG . Factors influencing T-lymphopoiesis after allogeneic hematopoietic cell transplantation. Transplantation 2002; 73: 1154–1158.

    Article  Google Scholar 

  19. Clave E, Rocha V, Talvensaari K, Busson M, Douay C, Appert ML et al. Prognostic value of pretransplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood 2005; 105: 2608–2613.

    Article  CAS  Google Scholar 

  20. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911.

    Article  CAS  Google Scholar 

  21. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM . CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160: 1212–1218.

    CAS  PubMed  Google Scholar 

  22. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  23. Chai JG, Xue SA, Coe D, Addey C, Bartok I, Scott D et al. Regulatory T cells, derived from naive CD4+CD25− T cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance. Transplantation 2005; 79: 1310–1316.

    Article  CAS  Google Scholar 

  24. Miura Y, Thoburn CJ, Bright EC, Phelps ML, Shin T, Matsui EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 2004; 104: 2187–2193.

    Article  CAS  Google Scholar 

  25. Talvensaari K, Clave E, Douay C, Rabian C, Garderet L, Busson M et al. A broad T cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002; 99: 1458–1464.

    Article  CAS  Google Scholar 

  26. Chen X, Barfield R, Benaim E, Leung W, Knowles J, Lawrence D et al. Prediction of T cell reconstitution by assessment of T cell receptor excision circle before allogeneic hematopoietic stem cell transplantation in pediatric patients. Blood 2005; 105: 886–893.

    Article  CAS  Google Scholar 

  27. Svaldi M, Lanthaler AJ, Dugas M, Lohse P, Pescosta N, Straka C et al. T cell receptor excision circles: a novel prognostic parameter for the outcome of transplantation in multiple myeloma patients. Br J Haematol 2003; 122: 795–801.

    Article  CAS  Google Scholar 

  28. Petridou E, Klimentopoulou AE, Moustaki M, Kostrikis LG, Hatzakis A, Trichopoulos D . Recent thymic emigrants and prognosis in T- and B-cell childhood hematopoietic malignancies. Int J Cancer 2002; 101: 74–77.

    Article  CAS  Google Scholar 

  29. Eyrich M, Wollny G, Tzaribaschev N, Dietz K, Brugger D, Bader P et al. Onset of thymic recovery and plateau of thymic output are differentially regulated after stem cell transplantation in children. Biol Blood Marrow Transplant 2005; 11: 194–205.

    Article  Google Scholar 

  30. Foot AB, Potter MN, Donaldson C, Cornish JM, Wallington TB, Oakhill A et al. Immune reconstitution after BMT in children. Bone Marrow Transplant 1993; 11: 7–13.

    CAS  PubMed  Google Scholar 

  31. de Vries E, van Tol MJ, van den Bergh RL, Waaijer JL, ten Dam MM, Hermans J et al. Reconstitution of lymphocyte subpopulations after paediatric bone marrow transplantation. Bone Marrow Transplant 2000; 25: 267–275.

    Article  CAS  Google Scholar 

  32. Paulin T, Ringden O, Nilsson B . Immunological recovery after bone marrow transplantation: role of age, graft-versus-host disease, prednisolone treatment and infections. Bone Marrow Transplant 1987; 1: 317–328.

    CAS  PubMed  Google Scholar 

  33. Fujimaki K, Maruta A, Yoshida M, Kodama F, Matsuzaki M, Fujisawa S et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 2001; 27: 1275–1281.

    Article  CAS  Google Scholar 

  34. Storek J, Witherspoon RP, Storb R . T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 1995; 16: 413–425.

    CAS  PubMed  Google Scholar 

  35. Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380–3389.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Inna Sareneva and Noora Alakulppi MSc for technical assistance. This study was supported by the Nona and Kullervo Väre Foundation and the Finnish Cultural Foundation and the Sigrid Juselius Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Olkinuora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olkinuora, H., Talvensaari, K., Kaartinen, T. et al. T cell regeneration in pediatric allogeneic stem cell transplantation. Bone Marrow Transplant 39, 149–156 (2007). https://doi.org/10.1038/sj.bmt.1705557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705557

Keywords

This article is cited by

Search

Quick links