Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conditioning Regimens

Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: results of a pilot study including biological aspects

Summary:

Interleukin-6 (IL-6) is a major survival factor for multiple myeloma (MM) cells preventing apoptosis induced by dexamethasone (DEX) or chemotherapy. In all, 24 consecutive patients with MM in first-line therapy received DEX for 4 days, followed by melphalan (HDM: 140 mg/m2) and autologous stem cell transplantation (ASCT). The anti-IL-6 monoclonal antibody (mAb) (B-E8) was given till haematological recovery, starting 1 day before DEX. Results were historically compared to MM patients treated with HDM 140 and 200 mg/m2. Our results show (1) that B-E8 was able to fully neutralize IL-6 activity in vivo before and after HDM as shown by inhibition of C reactive protein (CRP) production; (2) no haematological toxicity; (3) a significant reduction of mucositis and fever; (4) a median event-free survival of 35 months and an overall survival of 68.2% at 5 years with a median follow-up of 72 months; and (5) the overall daily IL-6 production progressively increased on and after 7 days post-HDM, with the increased serum CRP levels. In the 5/24 patients with uncontrolled CRP production, a large IL-6 production was detected (320 μg/day) that could not possibly be neutralized by B-E8. These data show the feasibility to neutralize IL-6 in vivo with anti-IL-6 mAb in the context of HDM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bataille R, Harousseau JL . Multiple myeloma. N Engl J Med 1997; 336: 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  2. Attal M, Harousseau JL, Stoppa AM et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  3. Lenhoff S, Hjorth M, Holmberg E et al. Impact on survival of high-dose therapy with autologous stem cell support in patients younger than 60 years with newly diagnosed multiple myeloma: a population-based study. Nordic Myeloma Study Group. Blood 2000; 95: 7–11.

    CAS  PubMed  Google Scholar 

  4. Attal M, Harousseau JL, Facon T et al. InterGroupe Francophone du Myelome. single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003; 349: 2495–2502.

    Article  CAS  PubMed  Google Scholar 

  5. Moreau P, Facon T, Attal M et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma final: analysis of the Intergroupe Francophone du Myélome 9502 randomized trial. Blood 2002; 99: 731–735.

    Article  CAS  PubMed  Google Scholar 

  6. Sieghel DS, Desikan KR, Mehta J et al. Age is not a prognostic variable with autologous transplantation for multiple myeloma. Blood 1999; 93: 51–54.

    Google Scholar 

  7. Barlogie B, Jagannath S, Vesole DH et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 1997; 89: 789–793.

    CAS  PubMed  Google Scholar 

  8. Barlogie B, Jagannath S, Desikan KR et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999; 93: 55–65.

    CAS  PubMed  Google Scholar 

  9. Goldschmidt H, Egerer G, Ho AD . Autologous and allogenic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2000; 25 (Suppl 2): S25–S26.

    Article  PubMed  Google Scholar 

  10. Rossi JF, Legouffe E, Fegueux N et al. Autologous transplantation (AT) of CD34+ peripheral blood progenitor cells (PBPC) after double (D) high dose chemotherapy (HDC) in multiple myeloma (MM) is followed by severe immunodeficiency (ID) and high production of interleukin-6 (IL-6) related-C Reactive Protein (CRP) requiring additive immunotherapy (IT). Blood 1996; 88 (Suppt1): 132a (abstract 516).

    Google Scholar 

  11. Lemoli RM, Martinelli G, Zamagni E et al. Engraftment, clinical, and molecular follow-up of patients with multiple myeloma who were reinfused with highly purified CD34+ cells to support single or tandem high-dose chemotherapy. Blood 2000; 95: 2234–2239.

    CAS  PubMed  Google Scholar 

  12. Stewart AK, Vescio R, Schiller G et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. J Clin Oncol 2001; 19: 3771–3779.

    Article  CAS  PubMed  Google Scholar 

  13. Kawano M, Hirano T, Matsuda T et al. Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myeloma. Nature 1988; 332: 83–87.

    Article  CAS  PubMed  Google Scholar 

  14. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in multiple myeloma. Blood 1995; 85: 863–872.

    CAS  PubMed  Google Scholar 

  15. Klein B, Zhang XG, Jourdan M et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526.

    CAS  PubMed  Google Scholar 

  16. Klein B, Zhang XG, Jourdan M et al. Interleukin-6 is the central tumor growth factor in vitro and in vivo in multiple myeloma. Eur Cytokine Netw 1990; 1: 193–201.

    CAS  PubMed  Google Scholar 

  17. Zhang XG, Gaillard JP, Robillard N et al. Reproducible obtaining myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663.

    CAS  PubMed  Google Scholar 

  18. Portier M, Rajzbaum G, Zhang XG et al. In vivo interleukin 6 gene expression in the tumoral environment in multiple myeloma. Eur J Immunol 1991; 21: 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  19. Greipp P, Leong T, Benett JM et al. Plasmablastic morphology, an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E 9486 report by the ECOG Myeloma Laboratory Group. Blood 1998; 91: 2501–2507.

    CAS  PubMed  Google Scholar 

  20. Stasi R, Brunetti M, Parma A et al. The prognostic value of soluble interleukin-6 receptor in patients with multiple myeloma. Cancer 1998; 82: 1860–1866.

    Article  CAS  PubMed  Google Scholar 

  21. Klein B, Widjenes J, Zhang XG et al. Murine anti-IL-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991; 78: 1198–1204.

    CAS  PubMed  Google Scholar 

  22. Bataille R, Barlogie B, Lu ZY et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995; 86: 685–691.

    CAS  PubMed  Google Scholar 

  23. Lu ZY, Brailly H, Rossi JF et al. Overall interleukin-6 production exceeds 7 mg/day in multiple myeloma complicated by sepsis. Cytokine 1993; 5: 578–582.

    Article  CAS  PubMed  Google Scholar 

  24. Lu ZY, Brailly H, Wijdenes J et al. Measurement of whole body interleukin-6 (IL-6) production: prediction of the efficacy of anti-IL-6 treatments. Blood 1995; 86: 3124–3131.

    Google Scholar 

  25. Blay JY, Rossi JF, Widjenes J, Menetrier-Caux C . Role of interleukin-6 in the paraneoplastic syndrome associated with renal cell carcinoma. Int J Cancer 1997; 72: 424–430.

    Article  CAS  PubMed  Google Scholar 

  26. Frassanito MA, Cussmai A, Iodice G, Dammacco F . Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001; 97: 483–489.

    Article  CAS  PubMed  Google Scholar 

  27. Borsellino N, Belldegrun A, Bonavida B . Endogenous interleukin-6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 1995; 55: 4633–4639.

    CAS  PubMed  Google Scholar 

  28. Mizutani Y, Bonavida B, Koishihara Y et al. Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum(II) by anti-interleukin 6 monoclonal antibody or anti-interleukin 6 receptor monoclonal antibody. Cancer Res 1995; 55: 590–596.

    CAS  PubMed  Google Scholar 

  29. Klein B, Brailly H . Cytokine-binding proteins: stimulating antagonists. Immunol Today 1995; 16: 216–220.

    Article  CAS  PubMed  Google Scholar 

  30. Montero-Julian F, Klein B, Gautherot E, Brailly H . Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies: enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood 1995; 85: 917–924.

    CAS  PubMed  Google Scholar 

  31. Blade J, Samson D, Reece D et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated with high-dose therapy and haematopoietic stem cell transplantation. Myeloma subcommittee of the EBMT. European bone Marrow Transplant. Br J Haematol 1998; 102: 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  32. Widjenes J, Clement C, Klein B et al. Human recombinant dimeric IL-6 binds to its receptor as detected by anti-IL-6 monoclonal antibodies. Mol Immunol 1991; 28: 1183–1192.

    Article  Google Scholar 

  33. Kaplan EL, Meier P . Non parametric estimations from incomplete observations. J Am Stat Assoc 1958; 53: 457.

    Article  Google Scholar 

  34. Steffen M, Durken M, Pichlmeier U et al. Serum interleukin-6 levels during bone marrow transplantation: impact on transplant-related toxicity and engraftment. Bone Marrow Transplant 1996; 18: 301–307.

    CAS  PubMed  Google Scholar 

  35. Veldhuis GJ, Willemse PH, Sleijfer DT et al. Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small-cell lung cancer. J Clin Oncol 1995; 13: 2585–2593.

    Article  CAS  PubMed  Google Scholar 

  36. Trickha M, Corringham R, Klein B, Rossi JF . Targetted anti-interleukin-6 monoclonal antibody therapy for cancer: review of the rationale and clinical evidence. Clin Cancer Res 2003; 9: 4653–4665.

    Google Scholar 

  37. Beck JT, Hsu SM, Wijdenes J et al. Brief report: alleviation of systemic manifestations of Castleman's disease by monoclonal anti-interleukin-6 antibody. N Engl J Med 1994; 330: 602–605.

    Article  CAS  PubMed  Google Scholar 

  38. Emilie D, Widjenes J, Gisselbrecht C et al. Administration of an anti-interleukin-6 monoclonal antibody to patients with acquired immunodeficiency syndrome and lymphoma: effects on lymphoma growth and on B clinical symptoms. Blood 1994; 84: 2472–2479.

    CAS  PubMed  Google Scholar 

  39. Legouffe E, Liautard J, Gaillard JP et al. Human anti-mouse antibody response to the injection of murine monoclonal antibodies against IL-6. Clin Exp Immunol 1994; 98: 323–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castell JV, Gomez-Lechon MJ, David M et al. Acute phase response of human hepatocytes: regulation of acute phase protein synthesis by interleukin-6. Hepatology 1990; 12: 1179–1186.

    Article  CAS  PubMed  Google Scholar 

  41. Kollet O, Aviram R, Chebath J . The soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34+CD38-/low cells capable of repopulating severe combined immunodeficiency mice. Blood 1999; 94: 923–931.

    CAS  PubMed  Google Scholar 

  42. Sun L, Liu X, Qiu L et al. Administration of plasmid DNA expressing human interleukin-6 significantly improves thrombocytopoiesis in irradiated mice. Ann Hematol 2001; 80: 567–572.

    Article  CAS  PubMed  Google Scholar 

  43. Kaser A, Brandacher G, Steurer W et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001; 98: 2720–2725.

    Article  CAS  PubMed  Google Scholar 

  44. Efferth T, Fabry U, Osieka R . Interleukin-6 affects melphalan-induced DNA damage and repair in human multiple myeloma cells. Anticancer Res 2002; 22: 231–234.

    CAS  PubMed  Google Scholar 

  45. Rowley M, Liu P, Van Ness B . Heterogeneity in therapeutic response of genetically altered myeloma cell lines to interleukin-6, dexamethasone, doxorubicin and melphalan. Blood 2000; 96: 3175–3180.

    CAS  PubMed  Google Scholar 

  46. Tegg EM, Griffiths AE, Lowenthal RM et al. Association between high interleukin-6 levels and adverse outcome after autologous haemopoietic stem cell transplantation. Bone Marrow Transplant 2001; 28: 929–933.

    Article  CAS  PubMed  Google Scholar 

  47. Moreau P, Milpied N, Mahé B et al. 220 mg/m2 melphalan followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant 1999; 23: 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  48. Durie BGM, Salmon SE . A critical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36: 842–854.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-F Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, JF., Fegueux, N., Lu, Z. et al. Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: results of a pilot study including biological aspects. Bone Marrow Transplant 36, 771–779 (2005). https://doi.org/10.1038/sj.bmt.1705138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705138

Keywords

This article is cited by

Search

Quick links