Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Immunotherapy in allogeneic hematopoietic stem cell transplantation – not just a case for effector cells

Summary:

The concept that in allogeneic hematopoietic stem cell transplantation (alloHSCT) the immune system plays a prominent role in the control of leukemic disease is supported by the clinical observation that immunological effector mechanisms contribute to the elimination of leukemic blasts. The failure to induce prolonged remission after alloHSCT has led to resurgent interest in complementing concepts of immune modulation to improve the antileukemic reponse. While the general focus has been placed on manipulation of cytotoxic effector cell populations, we will explore the dual role of leukemia cells as both antigen-presenting and target cells and describe various vaccination strategies to facilitate a protective antileukemic immune response in this setting. In addition, we will introduce mesenchymal stem cells (MSC) as another cell population recently recognized for their immunomodulatory properties. The potential benefits and hazards of MSC-cotransplantation in alloHSCT with regard to the graft versus leukemia (GvL) and the graft versus host (GvH) response will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Borgmann A, von Stackelberg A, Hartmann R et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 2003; 101: 3835–3839.

    Article  CAS  PubMed  Google Scholar 

  2. Jamieson CH, Amylon MD, Wong RM, Blume KG . Allogeneic hematopoietic cell transplantation for patients with high-risk acute lymphoblastic leukemia in first or second complete remission using fractionated total-body irradiation and high-dose etoposide: a 15-year experience. Exp Hematol 2003; 31: 981–986.

    Article  PubMed  Google Scholar 

  3. Gustafsson Jernberg A, Remberger M, Ringden O, Winiarski J . Graft-versus-leukaemia effect in children: chronic GVHD has a significant impact on relapse and survival. Bone Marrow Transplant 2003; 31: 175–181.

    Article  CAS  PubMed  Google Scholar 

  4. Flomenberg N, Baxter-Lowe LA, Confer D et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 2004; 104: 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  5. Lang P, Handgretinger R, Niethammer D et al. Transplantation of highly purified CD34+ progenitor cells from unrelated donors in pediatric leukemia. Blood 2003; 101: 1630–1636.

    Article  CAS  PubMed  Google Scholar 

  6. Amrolia PJ, Muccioli-Casadei G, Yvon E et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 2003; 102: 2292–2299.

    Article  CAS  PubMed  Google Scholar 

  7. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  8. Goulmy E . Minor histocompatibility antigens: allo target molecules for tumor-specific immunotherapy. Cancer J 2004; 10: 1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  10. Bianco P, Riminucci M, Gronthos S, Robey PG . Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180–192.

    Article  CAS  PubMed  Google Scholar 

  11. Kolb H-J, Schmidt C, Chen X et al. Adoptive Immunotherapy in chimeras with donor lymphocytes. Acta Haematol 2003; 110: 110–120.

    Article  PubMed  Google Scholar 

  12. Collins Jr RH, Goldstein S, Giralt S et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    Article  PubMed  Google Scholar 

  13. Glouchkova L, Ackermann B, Dilloo D . Leukemia vaccine. Acta Haematol 2003; 110: 160–170.

    Article  PubMed  Google Scholar 

  14. Zheng Z, Takahashi M, Aoki S et al. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies. J Exp Clin Cancer Res 1998; 17: 251–258.

    CAS  PubMed  Google Scholar 

  15. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW et al. Irradiated B7-1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 1996; 87: 2938–2946.

    CAS  PubMed  Google Scholar 

  16. Stripecke R, Skelton DC, Pattengale PK et al. Combination of CD80 and granulocyte-macrophage colony-stimulating factor coexpression by a leukemia cell vaccine: preclinical studies in a murine model recapitulating Philadelphia chromosome-positive acute lymphoblastic leukemia. Hum Gene Ther 1999; 10: 2109–2122.

    Article  CAS  PubMed  Google Scholar 

  17. Dilloo D, Brown M, Roskrow M et al. CD40 ligand induces an antileukemia immune response in vivo. Blood 1997; 90: 1927–1933.

    CAS  PubMed  Google Scholar 

  18. Dilloo D, Bacon K, Holden W et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 1996; 2: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  19. Zibert A, Balzer S, Souquet M et al. CCL3/MIP-1alpha is a potent immunostimulator when coexpressed with interleukin-2 or granulocyte-macrophage colony-stimulating factor in a leukemia/lymphoma vaccine. Hum Gene Ther 2004; 15: 21–34.

    Article  CAS  PubMed  Google Scholar 

  20. Schultze JL, Anderson KC, Gilleece MH et al. A pilot study of combined immunotherapy with autologous adoptive tumour-specific T-cell transfer, vaccination with CD40-activated malignant B cells and interleukin 2. Br J Haematol 2001; 113: 455–460.

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin RG, Alderson MR, Smith CA et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 1993; 73: 447–456.

    Article  CAS  PubMed  Google Scholar 

  22. Rowley TF, Al-Shamkhani A . Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T cell responses in vivo. J Immunol 2004; 172: 6039–6046.

    Article  CAS  PubMed  Google Scholar 

  23. Arens R, Schepers K, Nolte MA et al. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J Exp Med 2004; 199: 1595–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lens SM, Drillenburg P, den Drijver BF et al. Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol 1999; 106: 491–503.

    Article  CAS  PubMed  Google Scholar 

  25. Glouchkova L, Ackermann B, Paris-Scholz C et al. Ex vivo upregulation of CD70 and CD80/CD86 on lymphoblasts of the B-lineage enhances their T-cell stimulatory capacity and may be used to generate a vaccine for patients with acute lymphoblastic leukemia. Bone Marrow Transplant 2000; 25: S23.

    Article  Google Scholar 

  26. Cardoso AA, Seamon MJ, Afonso HM et al. Ex vivo generation of human anti-pre-B leukemia-specific autologous cytolytic T cells. Blood 1997; 90: 549–561.

    CAS  PubMed  Google Scholar 

  27. van Kooten C, Banchereau J . CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17.

    Article  CAS  PubMed  Google Scholar 

  28. Law CL, Wormann B, LeBien TW . Analysis of expression and function of CD40 on normal and leukemic human B cell precursors. Leukemia 1990; 4: 732–738.

    CAS  PubMed  Google Scholar 

  29. Van den Hove LE, Van Gool SW, Vandenberghe P et al. CD40 triggering of chronic lymphocytic leukemia B cells results in efficient alloantigen presentation and cytotoxic T lymphocyte induction by up-regulation of CD80 and CD86 costimulatory molecules. Leukemia 1997; 11: 572–580.

    Article  CAS  PubMed  Google Scholar 

  30. D'Amico G, Vulcano M, Bugarin C et al. CD40 activation of BCP-ALL cells generates IL-10-producing, IL-12-defective APCs that induce allogeneic T-cell anergy. Blood 2004; 104: 744–751.

    Article  CAS  PubMed  Google Scholar 

  31. Banchereau J, Paczesny S, Blanco P et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 2003; 987: 180–187.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu FJ, Caspar CB, Czerwinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial. Blood 1997; 89: 3129–3135.

    CAS  PubMed  Google Scholar 

  33. Titzer S, Christensen O, Manzke O et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 2000; 108: 805–816.

    Article  CAS  PubMed  Google Scholar 

  34. Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  35. Mackensen A, Herbst B, Chen JL et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 2000; 86: 385–392.

    Article  CAS  PubMed  Google Scholar 

  36. Ackermann B, Troger A, Glouchkova L et al. Characterization of CD34+ progenitor-derived dendritic cells pulsed with tumor cell lysate for a vaccination strategy in children with malignant solid tumors and a poor prognosis. Klin Padiatr 2004; 216: 176–182.

    Article  CAS  PubMed  Google Scholar 

  37. Babatz J, Rollig C, Oelschlagel U et al. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. J Hematother Stem Cell Res 2003; 12: 515–523.

    Article  CAS  PubMed  Google Scholar 

  38. Holtl L, Zelle-Rieser C, Gander H et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 2002; 8: 3369–3376.

    CAS  PubMed  Google Scholar 

  39. Fujii S, Shimizu K, Fujimoto K et al. Analysis of a chronic myelogenous leukemia patient vaccinated with leukemic dendritic cells following autologous peripheral blood stem cell transplantation. Jpn J Cancer Res 1999; 90: 1117–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murphy GP, Tjoa BA, Simmons SJ et al. Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients. Prostate 2000; 43: 59–62.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  PubMed  Google Scholar 

  42. Reichardt VL, Okada CY, Liso A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  43. Cabrera R, Diaz-Espada F, Barrios Y et al. Infusion of lymphocytes obtained from a donor immunised with the paraprotein idiotype as a treatment in a relapsed myeloma. Bone Marrow Transplant 2000; 25: 1105–1108.

    Article  CAS  PubMed  Google Scholar 

  44. Cathcart K, Pinilla-Ibarz J, Korontsvit T et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 2004; 103: 1037–1042.

    Article  CAS  PubMed  Google Scholar 

  45. Miwa H, Beran M, Saunders GF . Expression of the Wilms' tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

    CAS  PubMed  Google Scholar 

  46. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917–921.

    Article  CAS  PubMed  Google Scholar 

  47. Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reker S, Meier A, Holten-Andersen L et al. Identification of novel survivin-derived CTL epitopes. Cancer Biol Ther 2004; 3: 173–179.

    Article  CAS  PubMed  Google Scholar 

  49. Siegel S, Steinmann J, Schmitz N et al. Identification of a survivin-derived peptide that induces HLA-A*0201-restricted antileukemia cytotoxic T lymphocytes. Leukemia 2004.

  50. Tamm I, Wang Y, Sausville E et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58: 5315–5320.

    CAS  PubMed  Google Scholar 

  51. Yamamoto K, Abe S, Nakagawa Y et al. Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leuk Res 2004; 28: 1203–1211.

    Article  CAS  PubMed  Google Scholar 

  52. Mori A, Wada H, Nishimura Y et al. Expression of the antiapoptosis gene survivin in human leukemia. Int J Hematol 2002; 75: 161–165.

    Article  CAS  PubMed  Google Scholar 

  53. Nakagawa Y, Yamaguchi S, Hasegawa M et al. Differential expression of survivin in bone marrow cells from patients with acute lymphocytic leukemia and chronic lymphocytic leukemia. Leuk Res 2004; 28: 487–494.

    Article  CAS  PubMed  Google Scholar 

  54. Troeger A, Siepermann M, Glouchkova L et al. Survivin modulates CD95-induced apoptosis in B-cell leukemia. Abstract book, Erasmus Workshop on Molecular Therapeutics in Acute Leukemia 2003; 135.

  55. Zeis M, Siegel S, Wagner A et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 2003; 170: 5391–5397.

    Article  CAS  PubMed  Google Scholar 

  56. Teshima T, Mach N, Hill GR et al. Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res 2001; 61: 162–171.

    CAS  PubMed  Google Scholar 

  57. Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48.

    Article  PubMed  Google Scholar 

  58. Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  59. Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729.

    Article  CAS  PubMed  Google Scholar 

  60. Tse WT, Pendleton JD, Beyer WM et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397.

    Article  CAS  PubMed  Google Scholar 

  61. Jorgensen C, Djouad F, Apparailly F et al. Engineering mesenchymal stem cells for immunotherapy. Gene Ther 2003; 10: 928–931.

    Article  CAS  PubMed  Google Scholar 

  62. Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

  63. Rasmusson I, Ringden O, Sundberg B, Le Blanc K . Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213.

    Article  PubMed  Google Scholar 

  64. Potian JA, Aviv H, Ponzio NM et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003; 171: 3426–3434.

    Article  CAS  PubMed  Google Scholar 

  65. Djouad F, Plence P, Bony C et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  66. Meisel R, Zibert A, Laryea M et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  67. Munn DH, Zhou M, Attwood JT et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193.

    Article  CAS  PubMed  Google Scholar 

  68. Fallarino F, Grohmann U, Vacca C et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002; 9: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  69. Alexander AM, Crawford M, Bertera S et al. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51: 356–365.

    Article  CAS  PubMed  Google Scholar 

  70. Uyttenhove C, Pilotte L, Theate I et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9: 1269–1274.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Dilloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troeger, A., Meisel, R., Moritz, T. et al. Immunotherapy in allogeneic hematopoietic stem cell transplantation – not just a case for effector cells. Bone Marrow Transplant 35 (Suppl 1), S59–S64 (2005). https://doi.org/10.1038/sj.bmt.1704849

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704849

Keywords

This article is cited by

Search

Quick links