Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloid Reconstitution

Extensive early apoptosis in frozen–thawed CD34-positive stem cells decreases threshold doses for haematological recovery after autologous peripheral blood progenitor cell transplantation

Abstract

Stem cell doses necessary for engraftment after myelo-ablative therapy as defined for fresh transplants vary largely. Loss of CD34+ cell quality after cryopreservation might contribute to this variation. With a new early apoptosis assay including the vital stain Syto16, together with the permeability marker 7-AAD, CD34+ cell viability in leucapheresis samples of 49 lymphoma patients receiving a BEAM regimen was analysed. After freeze–thawing large numbers of non-viable, early apoptotic cells appeared, leading to only 42% viability compared to 72% using 7-AAD only. Based on this Syto16 staining in the frozen–thawed grafts, threshold numbers for adequate haematological recovery of 2.8–3.0 × 106 CD34+ cells/kg body weight determined for fresh grafts, now decreased to 1.2–1.3 × 106 CD34+ cells/kg. In whole blood transplantation of lymphoma patients (n = 45) receiving a BEAM-like regimen, low doses of CD34+ cells were sufficient for recovery (0.3–0.4 × 106CD34+ cells/kg). In contrast to freeze–thawing of leucapheresis material, a high viability of CD34+ cells was preserved during storage for 3 days at 4°C, leaving threshold doses for recovery unchanged. In conclusion, the Syto16 assay reveals the presence of many more non-functional stem cells in frozen–thawed transplants than presumed thus far. This led to a factor 2.3-fold adjustment downward of viable CD34+ threshold doses for haematological recovery.

Bone Marrow Transplantation (2002) 29, 249–255. doi:10.1038/sj.bmt.1703357

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Filip S, Blaha M, Odrazka K et al. Application of whole blood and peripheral blood progenitor cells (PBPC) and new strategies for rescue after intensive cyclic chemotherapy in high-risk breast cancer J Hematother Stem Cell Res 2000 9: 31 38

    Article  CAS  Google Scholar 

  2. Vanasek J, Filip S, Medkova V et al. Mobilization of peripheral blood progenitor cells (PBPC) through a combination of chemotherapy and G-CSF in breast cancer patients and a possibility of unprocessed whole blood collection Bone Marrow Transplant 1998 21: 123 126

    Article  CAS  Google Scholar 

  3. Stewart DA, Guo D, Gluck S et al. Double high-dose therapy for Hodgkin's disease with dose-intensive cyclophosphamide, etoposide, and cisplatin (DICEP) prior to high-dose melphalan and autologous stem cell transplantation Bone Marrow Transplant 2000 26: 383 388

    Article  CAS  Google Scholar 

  4. Stewart DA, Guo D, Luider J et al. Factors predicting engraftment of autologous blood stem cells: CD34+ subsets inferior to the total CD34+ cell dose Bone Marrow Transplant 1999 23: 1237 1243

    Article  CAS  Google Scholar 

  5. Hohaus S, Martin S, Schneeweiss A et al. Adjuvant high-dose therapy with peripheral blood stem cell support for patients with high-risk breast cancer Cancer Chemother Pharmacol 1999 44: (Suppl.) S13 S17

    Article  CAS  Google Scholar 

  6. Ketterer N, Sonet A, Dumontet C et al. Toxicities after peripheral blood progenitor cell transplantation for lymphoid malignancies: analysis of 300 cases in a single institution Bone Marrow Transplant 1999 23: 1309 1315

    Article  CAS  Google Scholar 

  7. Alessandrino P, Bernasconi P, Caldera D et al. Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases Bone Marrow Transplant 1999 23: 533 537

    Article  CAS  Google Scholar 

  8. Ossenkoppele GJ, Schuurhuis GJ, Jonkhoff AR et al. High-dose melphalan with re-infusion of unprocessed, G-CSF-primed whole blood is effective and non-toxic therapy in multiple myeloma Eur J Cancer 1996 32A: 2058 2063

    Article  CAS  Google Scholar 

  9. Woll PJ, Thatcher N, Lomax L et al. Use of hematopoietic progenitors in whole blood to support dose-dense chemotherapy: a randomized phase II trial in small-cell lung cancer patients J Clin Oncol 2001 19: 712 719

    Article  CAS  Google Scholar 

  10. Ibrahim A, Fadel E, Jisr T et al. Autotransplantation for relapsed, refractory or high risk lymphoma with non cryopreserved hematopoietic peripheral stem cells Blood 1999 94: 4738 (Abstr.)

    Google Scholar 

  11. Ossenkoppele GJ, Schuurhuis GJ, Jonkhoff AR et al. G-CSF (filgrastim)-stimulated whole blood kept unprocessed at 4°C does support a BEAM-like regimen in bad-risk lymphoma Bone Marrow Transplant 1996 18: 427 431

    CAS  Google Scholar 

  12. Pettengell R, Morgenstern GR, Woll PJ et al. Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis Blood 1993 82: 3770 3777

    CAS  Google Scholar 

  13. Weaver A, Chang J, Wrigley E et al. Randomized comparison of progenitor-cell mobilization using chemotherapy, stem-cell factor, and filgrastim or chemotherapy plus filgrastim alone in patients with ovarian cancer J Clin Oncol 1998 16: 2601 2612

    Article  CAS  Google Scholar 

  14. Ruiz-Arguelles GJ, Lobato-Mendizabal E, Ruiz-Arguelles A et al. Non-cryopreserved unmanipulated hematopoietic peripheral blood stem cell autotransplant program: long-term results Arch Med Res 1999 30: 380 384

    Article  CAS  Google Scholar 

  15. Ruiz-Arguelles GJ, Ruiz-Arguelles A, Perez-Romano B et al. Filgrastim-mobilized peripheral-blood stem cells can be stored at 4 degrees and used in autografts to rescue high-dose chemotherapy Am J Hematol 1995 48: 100 103

    Article  CAS  Google Scholar 

  16. Bezwoda WR, Dansey R, Seymour L, Glencross D . Non-cryopreserved, limited number (1 or 2) peripheral bloodprogenitor cell (PBPC) collections following GCSF administration provide adequate hematologic support for high dose chemotherapy Hematol Oncol 1994 12: 101 10

    Article  CAS  Google Scholar 

  17. Shpall EJ, Champlin R, Glaspy JA . Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery Biol Blood Marrow Transplant 1998 4: 84 92

    Article  CAS  Google Scholar 

  18. Dercksen MW, Gerritsen WR, Rodenhuis S et al. Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation Blood 1995 85: 3313 3319

    CAS  Google Scholar 

  19. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy J Clin Oncol 2000 18: 1360 1377

    Article  CAS  Google Scholar 

  20. Perez-Simon JA, Caballero MD, Corral M et al. Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation Transfusion 1998 38: 385 391

    Article  CAS  Google Scholar 

  21. Geisler CH, Hansen MM, Andersen NS et al. BEAM + autologous stem cell transplantation in malignant lymphoma: 100 consecutive transplants in a single centre. Efficacy, toxicity and engraftment in relation to stem-cell source and previous treatment Eur J Haematol 1998 61: 173 182

    Article  CAS  Google Scholar 

  22. Schuurhuis GJ, Muijen MM, Oberink JW et al. Large populations of non-clonogenic early apoptotic CD34-positive cells are present in frozen–thawed peripheral blood stem cell transplants Bone Marrow Transplant 2001 27: 487 498

    Article  CAS  Google Scholar 

  23. Sutherland DR, Anderson L, Keeney M et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering J Hematother 1996 5: 213 226

    Article  CAS  Google Scholar 

  24. Pettengell R, Woll PJ, O'Connor DA et al. Viability of haemopoietic progenitors from whole blood, bone marrow and leukapheresis product: effects of storage media, temperature and time Bone Marrow Transplant 1994 14: 703 709

    CAS  Google Scholar 

  25. Haas R, Witt B, Mohle R et al. Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support Blood 1995 85: 3754 3761

    CAS  Google Scholar 

  26. Jones N, Williams D, Broadbent V et al. High-dose melphalan followed by autograft employing non-cryopreserved peripheral blood progenitor cells in children Eur J Cancer 1996 32A: 1938 1942

    Article  CAS  Google Scholar 

  27. Jones K, Tucker D, Fryga A . Peripheral blood stem cell transplantation-what do we infuse? Cytotherapy 2000 2: (Abstr.)

  28. Schmid I, Ferbas J, Uittenbogaart CH, Giorgi JV . Flow cytometric analysis of live cell proliferation and phenotype in populations with low viability Cytometry 1999 35: 64 74

    Article  CAS  Google Scholar 

  29. Anthony RS, McKelvie ND, Cunningham AJ et al. Flow cytometry using annexin V can detect early apoptosis in peripheral blood stem cell harvests from patients with leukaemia and lymphoma Bone Marrow Transplant 1998 21: 441 446

    Article  CAS  Google Scholar 

  30. Lazarus HM, Pecora AL, Shea TC et al. CD34+ selection of hematopoietic blood cell collections and autotransplantation in lymphoma: overnight storage of cells at 4°C does not affect outcome Bone Marrow Transplant 2000 25: 559 566

    Article  CAS  Google Scholar 

  31. Hechler G, Weide R, Heymanns J et al. Storage of noncryopreserved periphered blood stem cells for transplantation Ann Hematol 1996 72: 303 306

    Article  CAS  Google Scholar 

  32. Watanabe T, Dave B, Heimann DG et al. GM-CSF-mobilized peripheral blood CD34+ cells differ from steady-state bone marrow CD34+ cells in adhesion molecule expression Bone Marrow Transplant 1997 19: 1175 1181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ria van Wijngaarden-Du Bois and Kirsten Huijboom from the Central Laboratory Bloedtransfusiedienst Amsterdam for providing part of the leucapheresis samples of lymphoma patients, Arne de Kreuk for critically reading the manuscript and Cinthy Dekker-van Roessel for help with recovery data.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, F., Dräger, A., Pinedo, H. et al. Extensive early apoptosis in frozen–thawed CD34-positive stem cells decreases threshold doses for haematological recovery after autologous peripheral blood progenitor cell transplantation. Bone Marrow Transplant 29, 249–255 (2002). https://doi.org/10.1038/sj.bmt.1703357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703357

Keywords

This article is cited by

Search

Quick links