Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation

Abstract

To reduce the number of apheresis procedures and maintain the usual rate of hematopoietic recovery in patients treated with high-dose chemotherapy, we studied the effect of adding a small volume of ex vivo expanded bone marrow to low doses of CD34+ blood stem cells. Thirty-four patients with breast cancer received G-CSF (10 μg/kg/day) priming followed by a limited volume (50–100 ml) bone marrow aspiration and standard 10-liter aphereses. Marrow was expanded ex vivo using the AastromReplicell system and infused along with low doses of blood-derived CD34+ cells, collected in one apheresis. Thirty-one evaluable patients received a median CD34+ blood stem cell dose of 0.7 × 106/kg (range, 0.2–2.5) and 4.7 × 107 nucleated cells/kg (range, 1.98–8.7) of ex vivo expanded marrow. All patients recovered with normal blood counts and engrafted 500 neutrophils/μl and 20 000 platelets/μl in a median of 10 and 13 days, respectively. Multivariate analysis revealed that, in addition to CD34+ lineage negative cell quantity, the quantity of stromal progenitors contained in the ex vivo expanded product correlated with engraftment outcome (r = 0.551, P = 0.004). Our results indicate that ex vivo expanded bone marrow is capable of facilitating engraftment when combined with low doses of mobilized blood derived CD34+ cells. Bone Marrow Transplantation (2001) 28, 295–303.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hartmann O, Gaelle LE, Corroller A et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematological recovery and costs Ann Intern Med 1997 126: 600–607

    Article  CAS  PubMed  Google Scholar 

  2. Sheridan WP, Begley CG, Juttner CA et al. Effect of peripheral-blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy Lancet 1992 339: 640–644

    Article  CAS  PubMed  Google Scholar 

  3. Chao NJ, Schriber JR, Grimes K et al. Granulocyte colony-stimulating factor ‘mobilized’ peripheral-blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy Blood 1993 81: 2031–2035

    CAS  PubMed  Google Scholar 

  4. Watts MJ, Sullivan AM, Jamieson E et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pre-treated patients with malignant lymphoma J Clin Oncol 1997 15: 535–546

    Article  CAS  PubMed  Google Scholar 

  5. Weaver CH, Hazleton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral-blood progenitor cell collections in 692 patients after the administration of myeloblative chemotherapy Blood 1995 10: 3961–3969

    Google Scholar 

  6. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells J Clin Oncol 1995 13: 2547–2555

    Article  CAS  PubMed  Google Scholar 

  7. Pecora AL, Preti RA, Gleim GW et al. CD34+ CD33 cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients J Clin Oncol 1998 16: 2093–2014

    Article  CAS  PubMed  Google Scholar 

  8. Glaspy JA, Shpall EJ, LeMaistre CF et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients Blood 1997 90: 2939–2952

    CAS  PubMed  Google Scholar 

  9. Pecora AL . Impact of stem cell dose on hematopoietic recovery in autologous blood stem cell recipients Bone Marrow Transplant 1999 23: (Suppl. 2) S7-S12

    Article  Google Scholar 

  10. Perez-Simon JA, Caballero MD, Corral M et al. Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation Transfusion 1998 38: 385–390

    Article  CAS  PubMed  Google Scholar 

  11. Weaver CH, Tauer K, Zhen B et al. Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields J Hematother 1998 7: 241–249

    Article  CAS  PubMed  Google Scholar 

  12. Gazitt Y, Freytes CO, Callander N et al. Successful PBSC mobilization with high-dose G-CSF for patients failing a first round of mobilization J Hematother 1999 8: 173–183

    Article  CAS  PubMed  Google Scholar 

  13. Brenner MK, Rill DR, Moen RC et al. Gene-marking to trace origin of relapse after autologous bone marrow transplantation Lancet 1993 341: 85–90

    Article  CAS  PubMed  Google Scholar 

  14. Deisseroth AB, Zu Z, Claxton D et al. Genetic markings shows that Ph+ cells present in autologous transplant CML contribute to relapse after ABMT in CML Blood 1994 83: 3068–3072

    CAS  PubMed  Google Scholar 

  15. Rill DR, Santana VM, Roberts WM et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells Blood 1994 84: 330–383

    Google Scholar 

  16. Stiff P, Chen B, Franklin W et al. Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots following high-dose chemotherapy for breast cancer Blood 2000 95: 2169–2174

    CAS  PubMed  Google Scholar 

  17. Lundell BI, Tyer C, DeSombre K et al. Ex vivo perfusion culture expansion of tumor positive bone marrow from breast cancer patients results in passive purging during the culture period Bone Marrow Transplant 1998 22: 153–159

    Article  CAS  PubMed  Google Scholar 

  18. Koller MR, Manchel I, Newsome BS et al. Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated, and CD34-enriched cells J Hematother 1995 4: 159–169

    Article  CAS  PubMed  Google Scholar 

  19. Koc ON, Gerson SL, Cooper BW et al. Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and cultured-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy J Clin Oncol 2000 18: 307–316

    Article  CAS  PubMed  Google Scholar 

  20. Lundell BI, Mandalam RK, Smith AK . Clinical scale expansion of cryopreserved small volume whole bone marrow aspirates produces sufficient cells for clinical use J Hematother 1999 8: 115–127

    Article  CAS  PubMed  Google Scholar 

  21. Sutherland DR, Anderson L, Kenney M et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry J Hematother 1996 5: 213–226

    Article  CAS  PubMed  Google Scholar 

  22. Ross AA, Cooper BW, Lazarus HM et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques Blood 1993 82: 2605–2610

    CAS  PubMed  Google Scholar 

  23. Ross, AA, Moss TJ, Weintraub C et al. In vitro clonogenic growth of bone marrow micrometastasis from patients with breast cancer Breast Cancer Res Treat 1993 27: 169A (Abstr.)

    Google Scholar 

  24. Lowenthal RM, Tuck D, Tegg E et al. Hematopoietic stem-cell harvesting and transplantation using G-CSF-primed BM: comparison with unprimed BM and G-CSF-primed PBSC Cytotherapy 1999 1: 409–416

    Article  CAS  PubMed  Google Scholar 

  25. Tavassoli M, Friedenstein A . Hematopoietic stromal microenvironment Am J Hematol 1983 15: 195–213

    Article  CAS  PubMed  Google Scholar 

  26. Reese JS, Coc ON, Gerson SL et al. Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction J Hematother 1999 8: 515–523

    Article  CAS  Google Scholar 

  27. Gibson LF, Fortney J, Landreth KS et al. Disruption of bone marrow stromal cell function by etoposide Biol Blood Marrow Transplant 1997 3: 122–132

    CAS  PubMed  Google Scholar 

  28. Hulmen DL, Verfaillie C, Jones RB et al. Treatment of marrow stromal monolayers reversibly alters hematopoiesis Br J Haematol 1991 78: 3304–3309

    Google Scholar 

  29. Migliaccio A, Migliaccio G, Johnson G et al. Comparative analysis of hematopoietic growth factor release by stromal cells from normal donors for transplant patients Blood 1990 75: 305–312

    CAS  PubMed  Google Scholar 

  30. Fried W, Keto A, Barone J et al. Effects of cyclophosphamide and of busulfan on spleen colony-forming units and on hematopoietic stroma Cancer Res 1997 37: 1205–1209

    Google Scholar 

  31. McManus PM, Weiss L . Busulfan-induced chronic bone marrow failure: changes in cortical bone, marrow stromal cells, and adherence cell colonies Blood 1984 64: 1036–1041

    CAS  PubMed  Google Scholar 

  32. O'Flaherty E, Sparrow R, Szer J et al. Bone marrow stromal function from patients after bone marrow transplantation Bone Marrow Transplant 1995 15: 207–212

    CAS  PubMed  Google Scholar 

  33. Weaver A, Ryder D, Crowther D et al. Increased numbers of long-term culture-initiating cells in the apheresis product of patients randomized to receive increasing dose of granulocyte colony-stimulating factor Blood 1996 88: 3323–3328

    CAS  PubMed  Google Scholar 

  34. Mandalam RK, Vento CA, Brott DA, Smith AK . Synergistic effects of thrombopoietin, SCF, and FLT3-L in ex vivo expansion cultures Exp Hematol 1998 26: 768 (Abstr.)

    Google Scholar 

  35. Malik S, Pecora AL, Preti RA et al. Engraftment after high-dose therapy for non-Hodgkin's lymphoma (NHL) with low doses of CD34+ peripheral blood stem cells and in vitro expanded bone marrow cells Blood 1999 94: 558A (Abstr.)

    Google Scholar 

  36. Stiff PJ . Management strategies for the hard-to-mobilize patient Bone Marrow Transplant 1999 23: (Suppl. 2) S29–S33

    Article  PubMed  Google Scholar 

  37. Haas RR, Mohle S, Fruhauf S et al. Patient characteristics associated with successful mobilization in autografting of peripheral blood progenitor cells in malignant lymphoma Blood 1994 83: 3787–3794

    CAS  PubMed  Google Scholar 

  38. Demirer T, Bensinger WI, Buckner CD et al. Peripheral blood stem cell mobilization for high-dose chemotherapy J Hematother 1999 8: 103–113

    Article  CAS  PubMed  Google Scholar 

  39. Pecora AL, Preti RA, Lazarus HM et al. Breast cancer cell contamination of blood stem cell products in patients with metastatic breast cancer: predictors and clinical outcomes Blood 1999 94: 665A (Abstr.)

    Google Scholar 

Download references

Acknowledgements

Research support was provided by Aastrom Biosciences, Inc. The authors wish to acknowledge the work of Patricia Price, RN for her assistance in patient care and data management and Hillars Lazarus, MD for his thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecora, A., Stiff, P., LeMaistre, C. et al. A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation. Bone Marrow Transplant 28, 295–303 (2001). https://doi.org/10.1038/sj.bmt.1703137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703137

Keywords

This article is cited by

Search

Quick links