Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fetal Transplantation

Transplantation of a fetus with paternal Thy-1+CD34+cells for chronic granulomatous disease

Abstract

A fetus diagnosed with X-linked chronic granulomatous disease was transplanted with Thy-1+CD34+ cells of paternal origin. The transplant was performed at 14 weeks gestation by ultrasound guided injection into the peritoneal cavity. The fetus was delivered at 38 weeks gestation after an otherwise uneventful pregnancy. Umbilical cord blood was collected and used to determine the level of peripheral blood chimerism as well as levels of functional engrafted cells. Flow cytometry was used to detect donor leukocytes identified as HLA-A2B7+ cells, whereas recipient cells were identified as HLA-A2+B7 cells. No evidence of donor cell engraftment above a level of 0.01% was found. PCR was used to detect HLA-DRB1*15+ donor cells among the recipient's HLA-DRB1*15 cells, but no engraftment was seen with a sensitivity of 1:1000. The presence of functional, donor-derived neutrophils was assessed by flow cytometry using two different fluorescent dyes that measure reactive oxygen species generated by the phagocyte NADPH oxidase. No evidence of paternal-derived functional neutrophils above a level of 0.15% was observed. Peripheral blood and bone marrow samples were collected at 6 months of age. Neither sample showed engraftment by HLA typing using both flow cytometry and PCR. Functional phagocytes were also not observed. Furthermore, no indication of immunological tolerance specific for the donor cells was indicated by a mixed lymphocyte reaction assay performed at 6 months of age. While there appears to be no engraftment of the donor stem cells, the transplant caused no harm to the fetus and the child was healthy at 6 months of age. Analyses of fetal tissues, obtained from elective abortions, revealed that CD3+ T cells and CD56+CD3 NK cells are present in the liver at 8 weeks gestation and in the blood by 9 weeks gestation. The presence of these lymphocytes may contribute to the lack of donor cell engraftment in the human fetus. Bone Marrow Transplantation (2001) 27, 355–364.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zanjani ED, Ascensao JL, Flake AW et al. The fetus as an optimal donor and recipient of hemopoietic stem cells Bone Marrow Transplant 1992 10: 107–114

    PubMed  Google Scholar 

  2. Flake AW, Zanjani ED . In utero hematopoietic stem cell transplantation JAMA 1997 278: 932–937

    Article  CAS  PubMed  Google Scholar 

  3. Flake AW, Zanjani ED . In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers Blood 1999 94: 2179–2191

    CAS  PubMed  Google Scholar 

  4. Shaaban AF, Flake AW . Fetal hematopoietic stem cell transplantation Semin Perinatol 1999 23: 515–523

    Article  CAS  PubMed  Google Scholar 

  5. Simpson TJ, Golbus MS . In utero fetal hematopoietic stem cell transplantation Semin Perinatol 1985 9: 68–74

    CAS  PubMed  Google Scholar 

  6. Crombleholme TM, Bianchi DW . In utero hematopoietic stem cell transplantation and gene therapy Semin Perinatol 1994 18: 376–384

    CAS  PubMed  Google Scholar 

  7. Jones DR, Bui TH, Anderson EM et al. In utero haematopoietic stem cell transplantation: current perspectives and future potential Bone Marrow Transplant 1996 18: 831–837

    CAS  PubMed  Google Scholar 

  8. Zanjani ED, Almeida-Porada G, Ascensao JL et al. Transplantation of hematopoietic stem cells in utero Stem Cells 1997 15: 79–92

    Article  PubMed  Google Scholar 

  9. Charbord P, Tavian M, Humeau L, Peault B . Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment Blood 1996 87: 4109–4119

    CAS  PubMed  Google Scholar 

  10. Touraine JL, Raudrant D, Royo C et al. In-utero transplantation of stem cells in bare lymphocyte syndrome Lancet 1989 1: 1382

    Article  CAS  PubMed  Google Scholar 

  11. Touraine JL, Raudrant D, Royo C et al. In utero transplantation of hemopoietic stem cells in humans Transplant Proc 1991 23: 1706–1708

    CAS  PubMed  Google Scholar 

  12. Wengler GS, Lanfranchi A, Frusca T et al. In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI) Lancet 1996 348: 1484–1487

    Article  CAS  PubMed  Google Scholar 

  13. Flake AW, Roncarolo MG, Puck JM et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow New Engl J Med 1996 335: 1806–1810

    Article  CAS  PubMed  Google Scholar 

  14. Roos D, de Boer M, Kuribayashi F et al. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease Blood 1996 87: 1663–1681

    CAS  PubMed  Google Scholar 

  15. Rae J, Newburger PE, Dinauer MC et al. X-linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase Am J Hum Genet 1998 62: 1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishizawa L, Hangoc G, Van de Ven C et al. Immunomagnetic separation of CD34+ cells from human bone marrow, cord blood, and mobilized peripheral blood J Hematother 1993 2: 333–338

    Article  CAS  PubMed  Google Scholar 

  17. Tricot G, Gazitt Y, Leemhuis T et al. Collection, tumor contamination, and engraftment kinetics of highly purified hematopoietic progenitor cells to support high dose therapy in multiple myeloma Blood 1998 91: 4489–4495

    CAS  PubMed  Google Scholar 

  18. Sasaki DT, Tichenor EH, Lopez F et al. Development of a clinically applicable high-speed flow cytometer for the isolation of transplantable human hematopoietic stem cells J Hematother 1995 4: 503–514

    Article  CAS  PubMed  Google Scholar 

  19. Bárcena A, Muench MO, Song KS et al. Role of CD95/Fas and its ligand in the regulation of the growth of human CD34++CD38 fetal liver cells Exp Hematol 1999 27: 1428–1439

    Article  PubMed  Google Scholar 

  20. Golfier F, Bárcena A, Cruz J et al. Mid-trimester fetal livers are a rich source of CD34+/++ cells for transplantation Bone Marrow Transplant 1999 24: 451–461

    Article  CAS  PubMed  Google Scholar 

  21. Muench MO, Humeau L, Paek B et al. Differential effects of interleukin-3, interleukin-7, interleukin 15, and granulocyte–macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors Exp Hematol 2000 28: 961–973

    Article  CAS  PubMed  Google Scholar 

  22. Olerup O, Zetterquist H . HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor–recipient matching in cadaveric transplantation Tissue Antigens 1992 39: 225–235

    Article  CAS  PubMed  Google Scholar 

  23. Touraine JL . Treatment of human fetuses and induction of immunological tolerance in humans by in utero transplantation of stem cells into fetal recipients Acta Haematol 1996 96: 115–119

    Article  CAS  PubMed  Google Scholar 

  24. Hayward A, Ambruso D, Battaglia F et al. Microchimerism and tolerance following intrauterine transplantation and transfusion for alpha-thalassemia-1 Fetal Diagn Ther 1998 13: 8–14

    Article  CAS  PubMed  Google Scholar 

  25. Howson-Jan K, Matloub YH, Vallera DA, Blazar BR . In utero engraftment of fully H-2-incompatible versus congenic adult bone marrow transferred into nonanemic or anemic murine fetal recipients Transplantation 1993 56: 709–716

    Article  CAS  PubMed  Google Scholar 

  26. Carrier E, Lee TH, Busch MP, Cowan MJ . Induction of tolerance in nondefective mice after in utero transplantation of major histocompatibility complex-mismatched fetal hematopoietic stem cells Blood 1995 86: 4681–4690

    CAS  PubMed  Google Scholar 

  27. Kim HB, Shaaban AF, Milner R et al. In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy J Pediatr Surg 1999 34: 726–729

    Article  CAS  PubMed  Google Scholar 

  28. Fleischman RA, Mintz B . Development of adult bone marrow stem cells in H-2 compatible and noncompatible mouse fetuses J Exp Med 1984 159: 731–745

    Article  CAS  PubMed  Google Scholar 

  29. Blazar BR, Taylor PA, Vallera DA . In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T- and B-cell functional capabilities Blood 1995 86: 4353–4366

    CAS  PubMed  Google Scholar 

  30. Fleishman RA . Engraftment of W/c-kit mutant mice is determined by stem cell competition, not by increased marrow ‘space’ Exp Hematol 1996 24: 209–213

    CAS  PubMed  Google Scholar 

  31. Flake AW, Harrison MR, Adzick NS, Zanjani ED . Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras Science 1986 233: 776–778

    Article  CAS  PubMed  Google Scholar 

  32. Harrison MR, Slotnick RN, Crombleholme TM et al. In-utero transplantation of fetal liver haemopoietic stem cells in monkeys Lancet 1989 2: 1425–1427

    Article  CAS  PubMed  Google Scholar 

  33. Zanjani ED, Pallavicini MG, Ascensao JL et al. Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero J Clin Invest 1992 89: 1178–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hedrick MH, Rice HE, Sachs DH et al. Creation of pig–sheep xenogeneic chimeras by the in utero transplantation of hemopoietic cells Transplant Sci 1993 3: 23–26

    Google Scholar 

  35. Shields LE, Bryant EM, Easterling TR, Andrews RG . Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons Am J Obstet Gynecol 1995 173: 1157–1160

    Article  CAS  PubMed  Google Scholar 

  36. Kawashima I, Zanjani ED, Almaida-Porada G et al. CD34+ human marrow cells that express low levels of Kit protein are enriched for long-term marrow-engrafting cells Blood 1996 87: 4136–4142

    CAS  PubMed  Google Scholar 

  37. Colas G, Hollands P, Locatelli A et al. The xenotransplantation of goat and human hematopoietic cells to sheep fetuses Transplantation 1999 67: 984–990

    Article  CAS  PubMed  Google Scholar 

  38. Oppenheim SM, Muench MO, Gutierrez-Adan A et al. Hematopoietic stem cell transplantation in utero produces sheep^goat chimeras Blood Cells Mol Dis 2000 (in press

  39. Mychaliska GB, Muench MO, Rice HE et al. The biology and ethics of banking fetal liver hematopoietic stem cells for in utero transplantation J Pediatr Surg 1998 33: 394–399

    Article  CAS  PubMed  Google Scholar 

  40. Thilaganathan B, Nicolaides KH, Morgan G . Subpopulations of CD34-positive haemopoietic progenitors in fetal blood Br J Haematol 1994 87: 634–636

    Article  CAS  PubMed  Google Scholar 

  41. Ramshaw HS, Crittenden RB, Dooner M et al. High levels of engraftment with a single infusion of bone marrow cells into normal unprepared mice Biol Blood Marrow Transplant 1995 1: 74–80

    CAS  PubMed  Google Scholar 

  42. Haynes BF, Martin ME, Kay HH, Kurtzberg J . Early events in human T cell ontogeny: phenotypic characterization and immunohistological localization of T-cell precursors in early human fetal tissues J Exp Med 1988 168: 1061–1080

    Article  CAS  PubMed  Google Scholar 

  43. Renda MC, Fecarotta E, Dieli F et al. Evidence of alloreactive T lymphocytes in fetal liver: implications for fetal hematopoietic stem cell transplantation Bone Marrow Transplant 2000 25: 135–141

    Article  CAS  PubMed  Google Scholar 

  44. Lindton B, Markling L, Ringden O et al. Mixed lymphocyte culture of human fetal liver cells Fetal Diagn Ther 2000 15: 71–78.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips JH, Hori T, Nagler A et al. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon, delta proteins J Exp Med 1992 175: 1055–1066

    Article  CAS  PubMed  Google Scholar 

  46. Thilaganathan B, Abbas A, Nicolaides KH . Fetal blood natural killer cells in human pregnancy Fetal Diagn Ther 1993 8: 149–153.

    Article  CAS  PubMed  Google Scholar 

  47. Sánchez MJ, Spits H, Lanier LL, Phillips JH . Human natural killer cell committed thymocytes and their relation to the T cell lineage J Exp Med 1993 178: 1857–1866

    Article  PubMed  Google Scholar 

  48. Sánchez MJ, Muench MO, Roncarolo MG et al. Identification of a common T/NK cell progenitor in the human fetal thymus J Exp Med 1994 180: 569–576

    Article  PubMed  Google Scholar 

  49. Beecher MS, Baiocchi RA, Linett ML et al. Expression of the zeta protein subunit in CD3− NK effectors derived from human thymus Cell Immunol 1994 155: 508–516

    Article  CAS  PubMed  Google Scholar 

  50. Bennett M . Biology and genetics of hybrid resistance Adv Immunol 1987 41: 333–445

    Article  CAS  PubMed  Google Scholar 

  51. Yu YY, Kumar V, Bennett M . Murine natural killer cells and marrow graft rejection Annu Rev Immunol 1992 10: 189–213

    Article  CAS  PubMed  Google Scholar 

  52. Ruggeri L, Capanni M, Casucci M et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation Blood 1999 94: 333–339

    CAS  PubMed  Google Scholar 

  53. Lotzova E, Savary CA, Pollack SB . Prevention of rejection of allogeneic bone marrow transplants by NK 1.1 antiserum Transplantation 1983 35: 490–494

    Article  CAS  PubMed  Google Scholar 

  54. Tiberghien F, Pflumio F, Kuntz L, Loor F . Lack of transfer of lpr-type abnormalities (lymphoproliferation or lymphoid aplasia) in double congenic nude beige mice engrafted with lpr haematopoietic cells Immunology 1993 79: 158–166

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chargui J, Moya MJ, Sanhadji K et al. Anti-NK antibodies injected into recipient mice enhance engraftment and chimerism after allogeneic transplantation of fetal liver stem cells Thymus 1997 24: 233–246

    Article  CAS  PubMed  Google Scholar 

  56. Archer DR, Turner CW, Yeager AM, Fleming WH . Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation Blood 1997 90: 3222–3229

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs R Hoffman and C Juttner for their support and advice. This study was funded by SyStemix, Inc. (a Novartis Company) and by a grant to CTA from the Resource Evaluation and Allocation Committee at the University of California at San Francisco.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muench, M., Rae, J., Bárcena, A. et al. Transplantation of a fetus with paternal Thy-1+CD34+cells for chronic granulomatous disease. Bone Marrow Transplant 27, 355–364 (2001). https://doi.org/10.1038/sj.bmt.1702798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702798

Keywords

This article is cited by

Search

Quick links