Abstract
Objective:
To evaluate whether the amount or quality of carbohydrate in diet is associated with ovulatory infertility.
Subjects and Methods:
In total, 18 555 married, premenopausal women without a history of infertility were followed as they attempted a pregnancy or became pregnant during an 8-year period. Diet was assessed two times during follow-up using a validated food-frequency questionnaire and prospectively related to the incidence of infertility due ovulatory disorder.
Results:
During follow-up, 438 women reported ovulatory infertility. Total carbohydrate intake and dietary glycemic load were positively related to ovulatory infertility in analyses adjusted for age, body mass index, smoking, parity, physical activity, recency of contraception, total energy intake, protein intake and other dietary variables. The multivariable-adjusted risk ratio (RR) (95% confidence interval (CI)) of ovulatory infertility comparing the highest-to-lowest quintile of total carbohydrate intake was 1.91 (1.27–3.02). The corresponding RR (95% CI) for dietary glycemic load was 1.92 (1.26–2.92). Dietary glycemic index was positively related to ovulatory infertility only among nulliparous women. Intakes of fiber from different sources were unrelated to ovulatory infertility risk.
Conclusions:
The amount and quality of carbohydrate in diet may be important determinants of ovulation and fertility in healthy women.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Interaction of MC4R rs17782313 variants and dietary carbohydrate quantity and quality on basal metabolic rate and general and central obesity in overweight/obese women: a cross-sectional study
BMC Endocrine Disorders Open Access 10 May 2022
-
Dietary patterns are associated with improved ovarian reserve in overweight and obese women: a cross-sectional study of the Lifestyle and Ovarian Reserve (LORe) cohort
Reproductive Biology and Endocrinology Open Access 19 February 2022
-
Perikonzeptioneller Einfluss von Ernährung und Mikronährstoffen auf die Reproduktionsfunktion
Gynäkologische Endokrinologie Open Access 15 February 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Azziz R, Ehrmann D, Legro RS, Whitcomb RW, Hanley R, Fereshetian AG et al. (2001). Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab 86, 1626–1632.
Brand-Miller J, Hayne S, Petocz P, Colagiuri S (2003). Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 26, 2261–2267.
Brettenthaler N, De Geyter C, Huber PR, Keller U (2004). Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 89, 3835–3840.
Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J (2005). Fertility, family planning, and reproductive health of US women: data from the 2002 national survey of family growth. Vital Health Stat 23, 1–160.
Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC (2006). Iron intake and risk of ovulatory infertility. Obstet Gynecol 108, 1145–1152.
Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC (2007). Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr 85, 231–237.
Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC (in press). Use of multivitamins, intake of B vitamins and risk of ovulatory infertility. Fertil Steril; 2007 July 9; E-pub ahead of print; doi:10.1016/j.fertnstert.2007.03.089.
Chen Y, Coulston AM, Zhou M, Hollenbeck CB, Reaven GM (1995). Why do low-fat high-carbohydrate diets accentuate postprandial lipemia in patients with niddm? Diabetes Care 18, 10–16.
Coulston AM, Liu GC, Reaven GM (1983). Plasma glucose, insulin and lipid responses to high-carbohydrate low-fat diets in normal subjects. Metabolism 32, 52–56.
Deuster PA, Kyle SB, Moser PB, Vigersky RA, Singh A, Schoomaker EB (1986). Nutritional intakes and status of highly trained amenorrheic and eumenorrheic women runners. Fertil Steril 46, 636–643.
Douglas CC, Gower BA, Darnell BE, Ovalle F, Oster RA, Azziz R (2006a). Role of diet in the treatment of polycystic ovary syndrome. Fertil Steril 85, 679–688.
Douglas CC, Norris LE, Oster RA, Darnell BE, Azziz R, Gower BA (2006b). Difference in dietary intake between women with polycystic ovary syndrome and healthy controls. Fertil Steril 86, 411–417.
Dunaif A (1997). Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18, 774–800.
Ehrmann DA (2005). Polycystic ovary syndrome. N Engl J Med 352, 1223–1236.
Fitzmaurice GM, Laird NM, Ware JH (2004). Marginal models: generalized estimating equations (GEE). In: Fitzmaurice GM et al. (ed). Applied Longitudinal Analysis, Wiley & Sons: Hoboken, NJ, pp 291–321.
Garg A, Bantle JP, Henry RR, Coulston AM, Griver KA, Raatz SK et al. (1994). Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus. JAMA 271, 1421–1428.
Hill P, Garbaczewski L, Haley N, Wynder E (1984). Diet and follicular development. Am J Clin Nutr 39, 771–777.
Hjollund NHI, Jensen TK, Bonde JPE, Henriksen NE, Andersson AM, Skakkebaek NE (1999). Is glycosylated haemoglobin a marker of fertility? A follow-up study of first-pregnancy planners. Hum Reprod 14, 1478–1482.
Hull MG, Glazener CM, Kelly NJ, Conway DI, Foster PA, Hinton RA et al. (1985). Population study of causes, treatment, and outcome of infertility. Br Med J 291, 1693–1697.
Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM et al. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34, 362–366.
Jeppesen J, Schaaf P, Jones C, Zhou M, Chen Y, Reaven G (1997). Effects of low-fat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women. Am J Clin Nutr 65, 1027–1033.
Jimenez-Cruz A, Bacardi-Gascon M, Turnbull WH, Rosales-Garay P, Severino-Lugo I (2003). A flexible, low-glycemic index Mexican-style diet in overweight and obese subjects with type 2 diabetes improves metabolic parameters during a 6-week treatment period. Diabetes Care 26, 1967–1970.
Kaaks R, Lukanova A (2001). Energy balance and cancer: the role of insulin and insulin-like growth factor-i. Proc Nutr Soc 60, 91–106.
Lau C, Faerch K, Glumer C, Tetens I, Pedersen O, Carstensen B et al. (2005). Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: the inter99 study. Diabetes Care 28, 1397–1403.
Lefevre M, Lovejoy JC, Smith SR, DeLany JP, Champagne C, Most MM et al. (2005). Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing fabp2 genotypes. Metabolism 54, 1652–1658.
Liese AD, Schulz M, Fang F, Wolever TMS, D'Agostino Jr RB, Sparks KC et al. (2005). Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the insulin resistance atherosclerosis study. Diabetes Care 28, 2832–2838.
Liu GC, Coulston AM, Reaven GM (1983). Effect of high-carbohydrate-low-fat diets on plasma glucose, insulin and lipid responses in hypertriglyceridemic humans. Metabolism 32, 750–753.
Liu S, Manson JE, Stampfer MJ, Holmes MD, Hu FB, Hankinson SE et al. (2001). Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am J Clin Nutr 73, 560–566.
Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L et al. (2000). A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 71, 1455–1461.
Mayer-Davis EJ, Dhawan A, Liese AD, Teff K, Schulz M (2006). Towards understanding of glycaemic index and glycaemic load in habitual diet: associations with measures of glycaemia in the insulin resistance atherosclerosis study. Br J Nutr 95, 397–405.
McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF (2004). Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham offspring cohort. Diabetes Care 27, 538–546.
Miller JB, Pang E, Broomhead L (1995). The glycemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars. Br J Nutr 73, 613–623.
Moghetti P, Castello R, Negri C, Tosi F, Perrone F, Caputo M et al. (2000). Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovarian syndrome: a randomized, double blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85, 1139–1146.
Murakami K, Sasaki S, Takahashi Y, Okubo H, Hosoi Y, Horiguchi H et al. (2006). Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am J Clin Nutr 83, 1161–1169.
Oh K, Hu FB, Cho E, Rexrode KM, Stampfer MJ, Manson JE et al. (2005). Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am J Epidemiol 161, 161–169.
Ostman EM, Frid AH, Groop LC, Bjorck IME (2006). A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur J Clin Nutr 60, 334–341.
Reichman M, Judd J, Taylor P, Nair P, Jones D, Campbell W (1992). Effect of dietary fat on length of the follicular phase of the menstrual cycle in a controlled diet setting. J Clin Endocrinol Metab 74, 1171–1175.
Rich-Edwards JW, Goldman MB, Willett WC, Hunter DJ, Stampfer MJ, Colditz GA et al. (1994). Adolescent body mass index and ovulatory infertility. Am J Obstet Gynecol 171, 171–177.
Rich-Edwards JW, Spiegelman D, Garland M, Hertzmark E, Hunter DJ, Colditz GA et al. (2002). Physical activity, body mass index, and ovulatory disorder infertility. Epidemiology 13, 184–190.
Rizkalla SW, Taghrid L, Laromiguiere M, Huet D, Boillot J, Rigoir A et al. (2004). Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care 27, 1866–1872.
Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC (1997). Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. J Am Med Assoc 277, 472–477.
Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB (2004). Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80, 348–356.
Snow RC, Schneider JL, Barbieri RL (1990). High fiber and low saturated fat intake among oligomenorrheic undergraduates. Fertil Steril 54, 632–637.
The Diabetes Prevention Program Research Group (2005). Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 54, 2404–2414.
University of Sydney (Australia). Online glycemic index database. http://www.glycemicindex.com (accessed 2002).
Vrbikova J, Bendlova B, Hill M, Vankova M, Vondra K, Starka L (2002). Insulin sensitivity and β-cell function in women with polycystic ovary syndrome. Diabetes Care 25, 1217–1222.
Willett WC, Stampfer MJ (1998). Chapter 11: implications of total energy intake for epidemiologic analyses. In: Willett WC (ed). Nutritional Epidemiology, 2nd edn. Oxford University Press: New York, pp 273–301.
Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al. (1985). Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 51–65.
Acknowledgements
Financial Support: The work reported in this article was supported by CA50385, the main Nurses' Health Study II grant, by the training Grant T32 DK-007703 and by the Yerby Postdoctoral Fellowship Program.
The Nurses Health Study II is supported for other specific projects by the following NIH Grants: CA55075, CA67262, AG/CA14742, CA67883, CA65725, DK52866, HL64108, HL03804.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chavarro, J., Rich-Edwards, J., Rosner, B. et al. A prospective study of dietary carbohydrate quantity and quality in relation to risk of ovulatory infertility. Eur J Clin Nutr 63, 78–86 (2009). https://doi.org/10.1038/sj.ejcn.1602904
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.ejcn.1602904
Keywords
This article is cited by
-
Association Between Dietary Fiber and Female Fertility: a NHANES-Based Study
Reproductive Sciences (2023)
-
Dietary patterns are associated with improved ovarian reserve in overweight and obese women: a cross-sectional study of the Lifestyle and Ovarian Reserve (LORe) cohort
Reproductive Biology and Endocrinology (2022)
-
Interaction of MC4R rs17782313 variants and dietary carbohydrate quantity and quality on basal metabolic rate and general and central obesity in overweight/obese women: a cross-sectional study
BMC Endocrine Disorders (2022)
-
Perikonzeptioneller Einfluss von Ernährung und Mikronährstoffen auf die Reproduktionsfunktion
Gynäkologische Endokrinologie (2022)
-
Associations of diet, physical activity and polycystic ovary syndrome in the Coronary Artery Risk Development in Young Adults Women’s Study
BMC Public Health (2021)