Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The folic acid metabolite L-5-methyltetrahydrofolate effectively reduces total serum homocysteine level in orthotopic liver transplant recipients: a double-blind placebo-controlled study

Abstract

Objective:

Hyperhomocysteinemia is a described risk factor of cardiovascular diseases. The aim of this study was the treatment of hyperhomocysteinemia in liver transplant recipients with L-5-methyltetrahydrofolate (L-5-MTHF; 1 mg) vs folic acid (1 mg) vs placebo in a double-blind placebo-controlled study and to compare the relative responsiveness of these patients to L-5-MTHF and folic acid.

Subjects/Methods:

Patients were recruited from Hepatology-Transplantation-Unit at Johann Wolfgang Goethe-University, Frankfurt. Sixty patients were included in this study and 12 patients dropped out for different reasons. The patients were treated over 8 weeks with supplemental L-5-MTHF or folic acid or placebo. Serum homocysteine (HCY) was analyzed with high-performance liquid chromatography (HPLC) beside routine lab tests.

Results:

We observed only a significant decrease of total serum HCY in the L-5-MTHF group during the study period (at week 0: 15±7.7 μ M; after 8 weeks treatment: 9.41±2.6 μ M, P<0.001). There was no significant decrease of total serum HCY neither in the folic acid group nor in the placebo group.

Conclusion:

The effects of L-5-MTHF are significantly more potent than folic acid itself. Therefore, lowering serum HCY in liver transplant recipients is effective with L-5-MTHF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2

Similar content being viewed by others

References

  • Abbasoglu O, Levy MF, Brkic BB, Testa G, Jeyarajah DR, Goldstein RM et al. (1997). Ten years of liver transplantation: an evolving understanding of late graft loss. Transplantation 64, 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  • Akoglu B, Milovic V, Caspary WF, Faust D (2004). Hyperproliferation of homocysteine-treated colon cancer cells is reversed by folate and 5-methyltetrahydrofolate. Eur J Nutr 43, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Akoglu B, Wondra K, Caspary WF, Faust D (2006). Determinants of fasting total serum homocysteine levels in liver transplant recipients. Exp Clin Transplant 4, 462–466.

    PubMed  Google Scholar 

  • Brouwer IA, van Dusseldorp M, West CE, Meyboom S, Thomas CM, Duran M et al. (1999). Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. J Nutr 129, 1135–1139.

    Article  CAS  PubMed  Google Scholar 

  • Chanarin I, Perry J (1969). Evidence for reduction and methylation of folate in the intestine during normal absorption. Lancet 2, 776–778.

    Article  CAS  PubMed  Google Scholar 

  • Cravo M, Fidalgo P, Pereira AD, Gouveia-Oliveira A, Chaves P, Selhub J et al. (1994). DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur J Cancer Prev 3, 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB et al. (2001). Folate improves endothelial function in coronary artery disease: an effect mediated by reduction of intracellular superoxide? Arterioscler Thromb Vasc Biol 21, 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  • Duthie SJ, Whalley LJ, Collins AR, Leaper S, Berger K, Deary IJ (2002). Homocysteine, B vitamin status, and cognitive function in the elderly. Am J Clin Nutr 75, 908–913.

    Article  CAS  PubMed  Google Scholar 

  • Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA et al. (2003). Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 349, 847–858.

    Article  CAS  PubMed  Google Scholar 

  • Fassbender K, Mielke O, Bertsch T, Nafe B, Froschen S, Hennerici M (1999). Homocysteine in cerebral macroangiography and microangiopathy. Lancet 353, 1586–1587.

    Article  CAS  PubMed  Google Scholar 

  • Friedman AN, Rosenberg IH, Selhub J, Levey AS, Bostom AG (2002). Hyperhomocysteinemia in renal transplant recipients. Am J Transplant 2, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Groen V, Moser R (1999). Synthesis of optically pure diastereoisomers of reduced folates. Pteridines 10, 95–100.

    Google Scholar 

  • Homocysteine Lowering Trialists' Collaboration (1998). Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists' Collaboration. BMJ 316, 894–898.

    Article  Google Scholar 

  • Johnston SD, Morris JK, Cramb R, Gunson BK, Neuberger J (2002). Cardiovascular morbidity and mortality after orthotopic liver transplantation. Transplantation 73, 901–906.

    Article  PubMed  Google Scholar 

  • Mahony JF (1989). Long term results and complications of transplantation: the kidney. Transplant Proc 21, 1433–1434.

    CAS  PubMed  Google Scholar 

  • Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G (1993). Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities Study. Circulation 87, 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  • Mason JB (2003). Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133 (Suppl 3), 941S–947S.

    Article  CAS  PubMed  Google Scholar 

  • McCully KS, Wilson RB (1975). Homocysteine theory of arteriosclerosis. Atherosclerosis 22, 215–227.

    Article  CAS  PubMed  Google Scholar 

  • Miller JW, Nadeau MR, Smith J, Smith D, Selhub J (1994). Folate-deficiency-induced homocysteinaemia in rats: disruption of S-adenosylmethionine's co-ordinate regulation of homocysteine metabolism. Biochem J 298 (Part 2), 415–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minniti G, Piana A, Armani U, Cerone R (1998). Determination of plasma and serum homocysteine by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 828, 401–405.

    Article  CAS  PubMed  Google Scholar 

  • Moench C, Moench K, Lohse AW, Thies J, Otto G (2003). Prevention of ischemic-type biliary lesions by arterial back-table pressure perfusion. Liver Transpl 9, 285–289.

    Article  PubMed  Google Scholar 

  • Perry IJ, Wannamethee SG, Walker MK, Thomson AG, Whincup PH, Shaper AG (1995). Prospective study of risk factors for development of non-insulin dependent diabetes in middle aged British men. BMJ 310, 560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH (1996). Plasma homocysteine as a risk factor for a therothrombotic events in systemic lupus erythematosus. Lancet 348, 1120–1124.

    Article  CAS  PubMed  Google Scholar 

  • Pruthi J, Medkiff KA, Esrason KT, Donovan JA, Yoshida EM, Erb SR et al. (2001). Analysis of causes of death in liver transplant recipients who survived more than 3 years. Liver Transpl 7, 811–815.

    Article  CAS  PubMed  Google Scholar 

  • Rabkin JM, de La Melena V, Orloff SL, Corless CL, Rosen HR, Olyaei AJ (2001). Late mortality after orthotopic liver transplantation. Am J Surg 181, 475–479.

    Article  CAS  PubMed  Google Scholar 

  • Sauberlich HE, Kretsch MJ, Skala JH, Johnson HL, Taylor PC (1987). Folate requirement and metabolism in nonpregnant women. Am J Clin Nutr 46, 1016–1028.

    Article  CAS  PubMed  Google Scholar 

  • Schachinger V, Britten MB, Elsner M, Walter DH, Scharrer I, Zeiher AM (1999). A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation 100, 1502–1508.

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Weir DG (1981). The methyl folate trap. A physiological response in man to prevent methyl group deficiency in kwashiorkor (methionine deficiency) and an explanation for folic-acid induced exacerbation of subacute combined degeneration in pernicious anaemia. Lancet 2, 337–340.

    Article  CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ et al. (1995). Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332, 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Stanger O, Weger M, Renner W, Konetschny R (2001). Vascular dysfunction in hyperhomocyst(e)inemia. Implications for atherothrombotic disease. Clin Chem Lab Med 39, 725–733.

    Article  CAS  PubMed  Google Scholar 

  • Stroes ES, van Faassen EE, Yo M, Martasek P, Boer P, Govers R et al. (2000). Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res 86, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  • Sudan D, Venkataramani A, Lynch J, Fox I, Shaw B, Langnas A (1999). Causes of late mortality in survivors of liver transplantation. Transplantation 67, S564 (abstract).

  • Ueland PM, Refsum H, Beresford SA, Vollset SE (2000). The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 72, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Weir DG, Scott JM (1999). Brain function in the elderly: role of vitamin B12 and folate. Br Med Bull 55, 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Wu JT (2002). Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322, 21–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study medication L-5-MTHF was provided from Merck Eprova, Schaffhausen in Switzerland. L-5-MTHF, folic acid and placebo were capsuled at Hirsch Pharmacy, Zeil 111, Frankfurt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Faust.

Additional information

Guarantor: B Akoglu.

Contributors: The study was designed and supervised by BA, DF and WFC. MS produced the study medication in his reputable pharmacy. HB, AJ and EK coordinated the patients and the lab work. BA analyzed the data, interpreted the current findings and wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akoglu, B., Schrott, M., Bolouri, H. et al. The folic acid metabolite L-5-methyltetrahydrofolate effectively reduces total serum homocysteine level in orthotopic liver transplant recipients: a double-blind placebo-controlled study. Eur J Clin Nutr 62, 796–801 (2008). https://doi.org/10.1038/sj.ejcn.1602778

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602778

Keywords

Search

Quick links