Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depression and long chain n-3 fatty acids in adipose tissue in adults from Crete

Abstract

Background:

Only one study has investigated the relationship of essential fatty acids in the adipose tissue with depression in adults and suggested an inverse relationship between docosahexaenoic acid (22:6 n-3) (DHA) and depression.

Objective:

To examine the relation between adipose tissue polyunsaturated fatty acids especially n-3 and n-6 fatty acids, an index of long-term or habitual fatty acid intake, and depression in adults.

Design:

Cross-sectional study of healthy adults from the island of Crete.

Setting:

The Preventive Medicine and Nutrition Clinic, University of Crete, Greece.

Subjects:

A total of 130 healthy adults (59 males, 71 females) aged 22—58 years. The sample was a sub-sample of the Greek ApoEurope study group.

Methods:

Fatty acids were determined by gas chromatography in adipose tissue. Information about depression was obtained through the Zung Self-rating Depression Scale.

Results:

Adipose tissue DHA was inversely related with depression. Multiple linear regression analysis taking into account the possible confounding effect of age, gender, body mass index, smoking and educational level confirmed this association.

Conclusions:

The inverse relationship between adipose DHA and depression in adults, replicates findings of a previous study. This relationship indicates that a low long-term dietary intake of DHA is associated with an increased risk for depression in adults.

Funding:

The International Olive Oil Council and the DG XII of the European Union.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Adams PB, Lawson S, Sanigorski A, Sinclair AJ (1996). Arachidonic to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 31 (Suppl), 157–161.

    Article  Google Scholar 

  • Ahmad A, Moriguchi T, Salem N (2002). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol 26, 210–218.

    Article  Google Scholar 

  • Anda RF, Williamson DF, Escobedo LG, Mast EE, Giovino GA, Remington PL (1990). Depression and the dynamics of smoking. A national perspective. JAMA 264, 1541–1545.

    Article  CAS  Google Scholar 

  • Babin F, Sarda P, Limasset b, Descomps B, Rieu D, Mendy F et al. (1993). Nervonic acid in red blood cell sphingomyelin in premature infants: an index of myelin maturation? Lipids 28, 627–630.

    Article  CAS  Google Scholar 

  • Beynen AC, Hermus RJ, Hautvast JG (1980). A mathematical relationship between the fatty acid composition of the diet and that of the adipose tissue in man. Am J Clin Nutr 33, 81–85.

    Article  CAS  Google Scholar 

  • Beynen AC, Katan MB (1985). Why do polyunsaturated fatty acids lower serum cholesterol? Am J Clin Nutr 42, 560–563.

    Article  CAS  Google Scholar 

  • Bunney WE (1975). The current status of research in the catecholamine theories of affective disorders. Psychopharmacol Commun 6, 599–609.

    Google Scholar 

  • Calder PC (1997). n-3 polyunsaturated fatty acids and cytokine production in health and disease. Ann Nutr Metab 41, 203–234.

    Article  CAS  Google Scholar 

  • Carlson SE, Carver JD, House SG (1986). High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: a comparison of rat neural and red cell membrane phospholipids. J Nutr 116, 718–725.

    Article  CAS  Google Scholar 

  • Christensen MM, Hoy CE (1997). Early dietary intervention with structured triacylglycerols containing docosahexaenoic acid. Effect on brain, liver, and adipose tissue lipids. Lipids 32, 185–191.

    Article  CAS  Google Scholar 

  • Dayton S, Hashimoto S, Dixon W, Pearce ML (1966). Composition of lipids in human serum and adipose tissue during prolonged feeding of a diet high in unsaturated fat. J Lipids Res 7, 103–111.

    CAS  Google Scholar 

  • de la Presa Owens S, Innis SM (1999). Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr 129, 2088–2093.

    Article  CAS  Google Scholar 

  • Edwards R, Peet M, Shay J, Horrobin D (1998). Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48, 149–155.

    Article  CAS  Google Scholar 

  • Forsell Y, Winblad B (1999). Incidence of major depression in a very elderly population. Int J Geriatr Psychiatr 14, 368–372.

    Article  CAS  Google Scholar 

  • Fountoulakis KN, lacovides A, Samolis S, Kleanthous S, Kaprinis SG, Kaprinis GS et al. (2001). Reliability, validity and psychometric properties of the Greek translation of the zung depression rating scale. BMC Psychiatr 1, 6–11.

    Article  CAS  Google Scholar 

  • Frayn KN (1998). Regulation of fatty acid delivery in vivo. Adv Exp Med Biol 441, 171–179.

    Article  CAS  Google Scholar 

  • Gallo JJ, Royall DR, Anthony JC (1993). Risk factors for the onset of depression in middle age and later life. Soc Psychiatr Psychiatr Epidemiol 28, 101–108.

    Article  CAS  Google Scholar 

  • Glatzz JF, Soffers AE, Katan MB (1989). Fatty acid composition of serum cholesteryl esters and erythrocyte membranes as indicators of linoleic acid in man. Am J Clin Nutr 49, 269–276.

    Article  Google Scholar 

  • Hestad KA, Tonseth S, Stoen CD, Ueland T, Aukrust P (2003). Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J ECT 19, 183–188.

    Article  Google Scholar 

  • Hibbeln JR (1998). Fish consumption and major depression. Lancet 351, 1213.

    Article  CAS  Google Scholar 

  • Hibbeln JR, Linnoila M, Umhau JC, Rawlings R, George DT, Salem Jr N (1998). Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late-onset alcoholics. Biol Psychiatr 44, 235–242.

    Article  CAS  Google Scholar 

  • Ikemoto A, Nitta A, Furukawa S, Ohishi M, Nakamura A, Fujii Y et al. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci Lett 285, 99–102.

    Article  CAS  Google Scholar 

  • Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M (1997). Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38, 2012–2022.

    CAS  PubMed  Google Scholar 

  • Khalfoun B, Thibault F, Watier H, Bardos P, Lebranchu Y (1997). Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv Exp Med Biol 400, 589–597.

    Google Scholar 

  • Klerman GL, Weissman MM (1989). Increasing rates of depression. JAMA 261, 2229–2235.

    Article  CAS  Google Scholar 

  • Kuehner C (2003). Gender differences in unipolar depression: an update of epidemiological findings and possible explanations. Acta Psychiatr Scand 108, 163–174.

    Article  CAS  Google Scholar 

  • Lagarde M, Bernond N, Brossard N, Lemaitre-Delaunay D, Thies F, Croset M et al. (2001). Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16, 201–204.

    Article  CAS  Google Scholar 

  • Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000). Polyunsaturated fatty acids are potent neuroprotectors. EMBOJ 19, 1784–1793.

    Article  CAS  Google Scholar 

  • Li H, Liu D, Zhang E (2000). Effect of fish oil supplementation on fatty acid composition and neurotransmitters of growing rats. Wei Sheng Yan Jiu 29, 47–49.

    CAS  PubMed  Google Scholar 

  • Maes M (1995). Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatr 19, 11–38.

    Article  CAS  Google Scholar 

  • Maes M, Bosmans E, Suy E, Vandervorst C, DeJonckheere C, Raus J (1991). Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production. Acta Psychiatr Scand 84, 379–386.

    Article  CAS  Google Scholar 

  • Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY (1999). Lowered omega-3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatr Res 85, 275–291.

    Article  CAS  Google Scholar 

  • Maes M, Smith R, Christophe A, Cosyns P, Desnyder R, Meltzer H (1996). Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids. J Affect Disord 38, 35–46.

    Article  CAS  Google Scholar 

  • Mamalakis G, Kafatos A, Manios Y, Kalogeropoulos N, Andrikopoulos N, Kiriakakis M (2001). dipose fat quality versus quantity: relationships with children's serum lipid levels. Prev Med 33, 525–535.

    Article  CAS  Google Scholar 

  • Mamalakis G, Kiriakakis M, Tsibinos G, Kafatos A (2004a). Depression and adipose polyunsaturated fatty acids in the survivors of the Seven Countries Study population of Crete. Prostagl Leukotr Essent Fatty Acids 70, 495–501.

    Article  CAS  Google Scholar 

  • Mamalakis G, Kiriakakis M, Tsibinos G, Kafatos A (2004b). Depression and adipose polyunsaturated fatty acids in an adolescent group. Prostagl Leukotr Essent Fatty Acids 71, 289–294.

    Article  CAS  Google Scholar 

  • Mamalakis G, Tornaritis M, Kafatos A (2002). Depression and adipose essential polyunsaturated fatty acids. Prostagl Leukotr Essent Fatty Acids 67, 311–318.

    Article  CAS  Google Scholar 

  • Metcalfe LD, Schmitz AA, Pekka JR (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Ann Chem 18, 514–515.

    Article  Google Scholar 

  • Nemets B, Stahl Z, Belmaker RH (2002). Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatr 159, 477–479.

    Article  Google Scholar 

  • Paperwalla KN, Levin TT, Weiner J, Saravay SM (2004). Smoking and depression. Med Clin North Am 88, 1483–1494, x–xi.

    Article  Google Scholar 

  • Parks JS, Bullock BC, Rudel LL (1989). The reactivity of plasma phospholipids with lecithin: cholesterol acyltransferase is decreased in fish oil-fed monkeys. J Biol Chem 264, 2545–2551.

    CAS  PubMed  Google Scholar 

  • Peet M, Horrobin DF (2002). A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatr 59, 913–919.

    Article  CAS  Google Scholar 

  • Peet M, Murphy B, Shay J, Horrobin D (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatr 43, 315–319.

    Article  CAS  Google Scholar 

  • Polit L, Rotstein N, Carri N (2001). Effects of docosahexaenoic acid on retinal development: cellular and molecular aspects. Lipids 36, 927–935.

    Article  Google Scholar 

  • Price LH, Charney DS, Delgado PL, Heninger GR (1990). Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology (Berl) 100, 3–12.

    Article  CAS  Google Scholar 

  • Purasiri P, Mckechnie A, Heys SD, Eremin O (1997). Modulation in vitro of human natural cytotoxicity, lymphocyte proliferative response to mitogens and cytokine production by essential fatty acids. Immunology 92, 166–172.

    Article  CAS  Google Scholar 

  • Raclot T, Holm C, Langin D (2001). A role for hormone-sensitive lipase in the selective mobilization of adipose tissue fatty acids. Biochim Biophys Acta 1532, 88–96.

    Article  CAS  Google Scholar 

  • Rapoport SI, Chang MCJ, Spector AA (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42, 678–685.

    CAS  PubMed  Google Scholar 

  • Roberts RE, Deleger S, Strawbridge WJ, Kaplan GA (2003). Prospective association between obesity and depression: evidence from the Alameda County Study. Int J Obes Relat Metab Disord 27, 514–521.

    Article  CAS  Google Scholar 

  • Sapolsky RM (2000). The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatr 48, 713–714.

    Article  Google Scholar 

  • Schiele F, De Bacquer D, Vincent-Viry M, Beisiegel U, Ehnholm C, Evans A et al. (2000). Apolipoprotein E serum concentration and polymorphism in six European countries: the ApoEurope Project. Atherosclerosis 152, 475–488.

    Article  CAS  Google Scholar 

  • Sheline YI, Sanghavi M, Mintun MA, Gado MH (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19, 5034–5043.

    Article  CAS  Google Scholar 

  • Sheslow D, Hassink S, Wallace W, DeLancey E (1993). The relationship between self-esteem and depression in obese children. Ann NY Acad Sci 699, 289–291.

    Article  CAS  Google Scholar 

  • Snowdon J (2001). Is depression more prevalent in old age? Aust NZ J Psychiatr 35, 782–787.

    Article  CAS  Google Scholar 

  • Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E et al. (1999). Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatr 56, 407–412.

    Article  CAS  Google Scholar 

  • Su KP, Huang SY, Chiu CC, Shen WW (2003). Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 13, 267–271.

    Article  CAS  Google Scholar 

  • Subbaiah PV, Kaufman D, Bagdade JD (1993). Incorporation of dietary n-3 fatty acids into molecular species of phosphatidyl choline and cholesteryl ester in normal human plasma. Am J Clin Nutr 58, 360–368.

    Article  CAS  Google Scholar 

  • Taha AY, Ryan MA, Cunnane SC (2005). Despite transient ketosis, the classic high-fat ketogenic diet induces marked changes in fatty acid metabolism in rats. Metabolism 54, 1127–1132.

    Article  CAS  Google Scholar 

  • Takeuchi T, Fukumoto Y, Harada E (2002). Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res 131, 193–203.

    Article  CAS  Google Scholar 

  • Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J (1994). Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol 267 (5 Part 2), R1273–1279.

    CAS  PubMed  Google Scholar 

  • Thornburg JT, Parks JS, Rudel LL (1995). Dietary fatty acid modification of HDL phospholipid molecular species alters lecithin: cholesterol acyltransferase reactivity in cynomolgus monkeys. J Lipid Res 36, 277–289.

    CAS  PubMed  Google Scholar 

  • Valenzuela A, Von Bernhardi R, Valenzuela V, Ramirez G, Alarcon R, Sanhueza J et al. (2004). Supplementation of female rats with alpha-linolenic acid or docosahexaenoic acid leads to the same omega-6/omega-3 LC-PUFA accretion in mother tissues and in fetal and newborn brains. Ann Nutr Metab 48, 28–35.

    Article  CAS  Google Scholar 

  • Wang X, Zhao X, Mao ZY, Wang XM, Liu ZL (2003). Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14, 2457–2461.

    Article  CAS  Google Scholar 

  • Zheng D, Macera CA, Croft JB, Giles WH, Davis D, Scott WK (1997). Major depression and all-cause mortality among white adults in the United States. Ann Epidemiol 7, 213–218.

    Article  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the invaluable contribution of: Mrs Sofia Flouri and Mr Manolis Linardakis. This study was funded by the International Olive Oil Council and the DG XII of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mamalakis.

Additional information

Guarantor: G Mamalakis.

Contributors: GM did the statistical analysis, interpretation of results, collection of bibliography and preparation of the manuscript. AK initiated the study and was the overall study coordinator. He contributed to bibliography collection and preparation of the report. DK assisted in the analysis, interpretation and presentation of results as well as preparation of the manuscript. NK and NA performed the laboratory analyses and contributed in the preparation of the report. JM contributed to the statistical analysis of data. CH supervised study implementation and data collection and assisted in the preparation of the first draft of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamalakis, G., Kalogeropoulos, N., Andrikopoulos, N. et al. Depression and long chain n-3 fatty acids in adipose tissue in adults from Crete. Eur J Clin Nutr 60, 882–888 (2006). https://doi.org/10.1038/sj.ejcn.1602394

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602394

Keywords

This article is cited by

Search

Quick links