Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Communication
  • Published:

Assessment of nutritional folate status and selected vitamin status of women of childbearing age

Abstract

Objective: The aim of the study was to investigate folate and other selected vitamin status (ascorbic acid, tocopherol, retinol, vitamin B12), haematological indices and total homocysteine concentration of serum in women of childbearing age.

Design: A cross-sectional study.

Setting: Warsaw.

Subjects: Healthy women aged 18–30 y (n=78) not pregnant presently or previously, and not taking drugs.

Results: Haemoglobin and haematocrit values according to WHO criteria for 18 to 30-y-old women were normal. The optimal levels of serum tocopherol, >1.29 mg/dl (>29.9 µmol/l) to preventing civilization diseases, were found in 5.5% and serum retinol >71.6 mcg/dl (>2.5 µmol/l) in 6.4% of all studied persons. The analysis of serum folate concentration showed high-risk deficiency,<3 ng/ml (<6.8 nmol/l), in 6.4%, moderate and low risk together (7.0–14.9 nmol/l) in 61.6% and optimal folate levels (>14.9 nmol/l) in 32.0% of the studied group. Folate body stores were insufficient in almost all women. There was no high or moderate deficiency risk of vitamin B12 or ascorbic acid. None of the women under study had serum total homocysteine (tHcy) concentration >15 µmol/l, indicating hyperhomocysteinaemia. Serum total homocysteine concentrations in the range of 5–15 µmol/l were found in 71.8%, and serum tHcy >10 µmol/l in 7.7% of the studied group of women.

Sponsorship: The study was sponsored by the Polish Committee for Scientific Research.

European Journal of Clinical Nutrition (2001) 55, 743–747

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Ambrosi P, Garson D, Riberi A, Habib G, Barlalier A, Kreitmann B, Rolland PH, Bouvenot G, Luccioni R & Metras D (1998) Association of mild hyperhomocysteinemia with cardiac graft vascular disease Atheroclerosis 138 347–350

    Article  CAS  Google Scholar 

  • Araki A & Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liguid chromatography with fluorescence detection J. Chromatogr. 422 43–52

    Article  Google Scholar 

  • Bessey OA, Lowry OH, Brock MJ & Lopez JA (1990) The determination of vitamin A and carotenes in small quantities of blood serum J. Biol. Chem. 166 177–197

    Google Scholar 

  • Bower C (1995) Folate and neural tube defects Nutr. Rev. 53 (9Pt2), S33–S38

    Google Scholar 

  • Brouwer IA, van Dusseldorp M, Thomas MG, Durann, Hautvast JGA, Eskes TKAB & Steegers-Theunissen RPM (1999) Low dose folic acid supplementation decreases plasma homocysteine concentration: a randomized trial Am. J. Clin. Nutr. 69 99–104

    Article  CAS  Google Scholar 

  • Brussaard JH, Löwik MRH, van den Berg H, Brants HAM & Goldbohm RA (1997) Folate intake and status among adults in the Netherlands Eur. J. Clin. Nutr. 51(Suppl 3) S46–S50

    Google Scholar 

  • Butterworth CE Jr, Hatch KD & Soong SJ (1992a) Folate deficiency and cervical dysplasia Am. J. Obstet. Gynecol. 166 803–809

    Article  Google Scholar 

  • Butterworth CE Jr, Hatch K & Macaluso M (1992b) Folate deficiency and cervical dysplasia J.A.M.A. 267 528–533

    Article  Google Scholar 

  • Clarke R, Daly L & Robinson K (1991) Hyperhomocysteinemia; an independent risk factor for vascular disease New Engl. J. Med. 324 1149–1155

    Article  CAS  Google Scholar 

  • Costa de Carvalho MJ, Guilland JC, Moreau D, Boggio V & Fuchs F (1996) Vitamin status of healthy subjects in Burgundy (France) Ann. Nutr. Metab. 40 24–51

    Article  CAS  Google Scholar 

  • Czeizel AE & Dudas J (1992) Prevention of first occurrence of neural tube defects by periconceptional vitamin supplementation New Engl. J. Med. 327 1832–1835

    Article  Google Scholar 

  • Daly LE, Krike PN & Molloy A (1995) Folate levels and neural tube defects J.A.M.A. 274 1698–1702

    Article  CAS  Google Scholar 

  • Dierkes J, Kroesen M & Pietrzik K (1998) Folic acid and vitamin B6 supplementation and plasma homocysteine concentration in healthy young women Int J. Vitamin Nutr. Res. 68 98–103

    CAS  Google Scholar 

  • Gey KF (1994) Optimum plasma levels of antioxidant micronutrients. Ten years of antioxidant hypothesis on atherosclerosis Bibl. Nutr. Dieta 51 84–99

    Google Scholar 

  • Giles WH, Kittner JS, Anda RF, Croft JB & Casper ML (1995) Serum folate and risk for ischemic stroke Stroke 26 1166–1170

    Article  CAS  Google Scholar 

  • Giovannucci E, Stampfer MJ & Coldita G (1993) Folate, methionine and alcohol intake and risk of colorectal adenoma J. Natl. Cancer Inst. 7 895–904

    Google Scholar 

  • Grimble RF (1997) Effect of antioxidative vitamins on immune function with clinical applications. Internat J. Vitamin Nutr. Res. 69 61–63

    Google Scholar 

  • Hashim SA & Schuttringer GR (1996) Rapid determination of tocopherol in macro- and micro-quantities of plasma Am. J. Clin. Nutr. 19 137–144

    Article  Google Scholar 

  • Hennekenes ChH (1994) Proceedings of a symposium: Health Promotion and Disease Prevention: the role of antioxidant vitamins Am. J. Med. 97(Suppl) 3 A

    Google Scholar 

  • Herbert V (1961) The assay and nature of folic acid activity in human serum J. Clin. Invest. 40 1–9

    Article  Google Scholar 

  • Hoffbrand AV, Newcombe BFA & Mollin DL (1966) method of assay of red cell folate activity and the value of the assay as a test for folate deficiency J. Clin. Pathol. 19 17–28

    Article  CAS  Google Scholar 

  • James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JBY, Tafoya DL, Swenson DH, Wilson VL & Gaylor DW (1999) Abnormal folate metabolism and mutation in the methylenetrahydrofolate reductase gene may be maternal risk factor for Down syndrome Am. J. Clin. Nutr. 70 495–501

    Article  CAS  Google Scholar 

  • Kang SS, Wong PWK & Malinow MR (1992) Hyperhomocysteinemia as a risk factor for occlusive vascular disease A. Nutr. Rev. 12 279–298

    Article  CAS  Google Scholar 

  • Kim YI (1999) Folate and carcinogenesis: evidence, mechanisms and implications J. Nutr. Biochem. 10 66–88

    Article  CAS  Google Scholar 

  • Kirke PN, Molloy AM, Daly LE, Burke H, Weir DY & Scott JM (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects Q. J. Med. 86 703–708

    CAS  PubMed  Google Scholar 

  • Lech M, Mazur J & Sawińska J (1997) The incidence of neural tube defects in Poland Ped. Pol. 72 327–331 (in Polish)

    Google Scholar 

  • Lewis CA, Pancharuniti N & Sauberlich HE (1992) Plasma folate adequacy as determined by homocysteine level Ann. N.Y. Acad. Sci. 669 360–362

    Article  CAS  Google Scholar 

  • Lowry OH, Lopez JA & Bessey OA (1945) The determination of ascorbic acid in small amounts of blood serum J. Biol. Chem. 160 603–612

    Google Scholar 

  • Lyle BJ, Mares-Perlman JAEK, Klein B, Klein R, Palta M, Bowen EP & Gregor JL (1999) Serum carotenoids and tocopherols and incidence of age related nuclear cataract Am. J. Clin. Nutr. 69 272–277

    Article  CAS  Google Scholar 

  • Malinow MR, Bostom AG & Krauss RM (1999) Homocyst(e)ine, diet, and cardiovascular diseases. A Statement for Healthcare Professionals from Nutrition Committee, American Heart Association Circulation 99 178–182

    Article  CAS  Google Scholar 

  • Mann NJ, Li D, Sinclair AJ, Dudman N-PB, Guo XW, Elsworth GR, Wilson AK & Kelly FD (1999) The effect of diet on plasma homocysteine concentrations in healthy male subjects Eur. J. Clin. Nutr. 53 895–899

    Article  CAS  Google Scholar 

  • Moghadasian MH, Bruce M, McManus T & Frolich JJ (1997) Homocysteine and coronary artery disease Arch. Inter. Med. 157 2299–2308

    Article  CAS  Google Scholar 

  • Moor de Burgos A, Wartanowicz M & Ziemlański Ś (1992) Blood vitamin and lipid levels in overweight and obese women Eur. J. Clin. Nutr. 46 803–828

    CAS  PubMed  Google Scholar 

  • MRC Vitamin Study Research Group (1991) Prevention of neural tube defects. Results of the Medical Research Council Vitamin Study Lancet 338 131–137

    Article  Google Scholar 

  • Palacios A, Piergiacomi VA & Catala A (1999) Inhibition of lipid peroxidation of microsomes and mitochondria by cytostatic proteins from rat liver: effect of vitamin A Int. J. Vitamin Nutr. Res. 69 61–63

    Article  CAS  Google Scholar 

  • Pietrzik K & Brönstrup A (1997a) Folate in preventive medicine: a new role in cardiovascular disease, neural tube defects and cancer Ann. Nutr. Metab. 41 331–349

    Article  Google Scholar 

  • Pietrzik K & Brönstrup A (1997b) Causes and consequences of hyper-homocysteinemia Int. J. Vitamin Nutr. Res. 67 389–395

    Google Scholar 

  • Rasmussen LB, Ovesen L, Bülow I, Knudsen N, Laurberg P & Perrild H (2000) Folate intake, Lifestyle factors, and homocysteine concentrations in younger and older women Am. J. Clin. Nutr. 72 1156–1163

    Article  CAS  Google Scholar 

  • Rauh M, Verwied S, Kner I, Sonnichsen A & Koletzko B (1999) Hyperhomocysteinemia and vitamin status of school children. In Amino Acids Vol 17 4 5 Berlin: Springer

    Google Scholar 

  • Ray JG & Laskin CA (1999) Folic acid and homocysteine metabolic defects and the risk of placental abruption pre-eclampsia and spontaneous pregnancy loss: a systematic review Placenta 20 519–529

    Article  Google Scholar 

  • Reeves W, Brinton LS & Garcia M (1989) Human papillomavirus infection and cervical cancer in Latin America New Engl. J. Med. 320 1437–1441

    Article  CAS  Google Scholar 

  • Food and Nutrition Board Report of Food and Nutrition Board (1998) Washington, DC: National Academy Press

  • Rogalska-Niedźwiedź M, Chabros E, Chojnowska Z, Wajszczyk B, Charzewska J & Ziemlański Ś (2000) The study of folate consumption in a group of women at childbearing age Zyw. Czlow. Metab. 27 172–183 (in Polish)

    Google Scholar 

  • Selhub J, Jacques PF, Wilson PW, Rush D & Kalenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population J.A.M.A. 2770 2693–2698

    Article  Google Scholar 

  • Stampfer MJ (1997) Homocysteine levels and cardiovascular disease Am. Farm. Physician 56 1568–1569

    CAS  Google Scholar 

  • Steegers-Theunissen RPM, Boeres GHJ, Trijbels JMF & Eskes TKAB (1991) Neural tube defects and dearrangement of homocysteine metabolism New Engl. J. Med. 324 199–200

    Article  CAS  Google Scholar 

  • Ubbink JB, Vermaak WJH & Bissbort S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum J. Chromatogr. 565 441–446

    Article  CAS  Google Scholar 

  • Ubbink JB, Van Merwe A, Vermaak WJH & Delport R (1993) Hyperhomocysteinemia and the response to vitamin supplementation Clin. Invest. 71 993–998

    Article  CAS  Google Scholar 

  • Verhoef P, Stampfer MJ, Buring JE, Gaziano JM, Allen RA, Stabler SP, Reynolds RD, Kok FJ, Hennekens Ch H & Willet WC (1996) Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12 and folate Am. J. Epidemiol. 143 845–849

    Article  CAS  Google Scholar 

  • Verhoef P, Stampfer MJ & Rimm EB (1998) Folate and coronary heart disease Curr. Opin. Lipidol. 9 17–22

    Article  CAS  Google Scholar 

  • Vollset SF, Refsum H, Irgens LM, Emblem BM, Tverdal A, Giessing HK, Monsen ALB & Ueland PM (2000) Plasma total homocysteine pregnancy complications and adverse pregnancy outcomes: the Hordaland Homocysteine Study Am. J. Clin. Nutr. 71 926–928

    Google Scholar 

  • Voutilainen S, Lakka TA, Porkkala-Sarataho E, Rissanen T, Kaplan GA & Salonen JT (2000) Low serum folate concentrations are associated with an excess incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study Eur. J. Clin. Nutr. 54 424–428

    Article  CAS  Google Scholar 

  • Ward M, McNulty H, McPartlin J, Strain JJ, Weir DG & Scott JM (1997) Plasma homocysteine a risk factor for cardiovascular disease is lowered by physiological doses of folic acid Q. J. Med. 90 519–524

    Article  CAS  Google Scholar 

  • Wartanowicz M & Ziemlański Ś (1990) The risk of folate deficiency in selected populations in Poland. In Recent Knowledge on Iron and Folate Deficiencies, eds. S Hercberg, P Golan & H Dupin 197 463–465 Paris: INSERM

    Google Scholar 

  • Wartanowicz M, Ziemlański Ś & Rudnicki S (1998) Serum antioxidative vitamins levels in patients with ischemic heart disease in 1995–1996 in comparison with those, in 1992 (screening analysis) Med. Metab. II 5–10

    Google Scholar 

  • Woodside JW, Jarnewll J, McMaster D, Young IS, Harmon DL, McCrum E, Patterson CC, Gey KF, Whitehead AS & Akin F (1998) Effect of B-group vitamins and antioxidant vitamins on hyperhomocysteinemia: a double-blind randomized, factorial-design, controlled trial Am. J. Clin. Nutr. 67 858–866

    Article  CAS  Google Scholar 

  • Ziegler R, Brinton L, Mammon R, Lehman H, Lewine R & Modlin K (1990) Diet and risk of invasive cervical cancer among white women in the United States Am. J. Epidemiol. 132 432–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wartanowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartanowicz, M., Ziemlański, Ś., Bułhak-Jachymczyk, B. et al. Assessment of nutritional folate status and selected vitamin status of women of childbearing age. Eur J Clin Nutr 55, 743–747 (2001). https://doi.org/10.1038/sj.ejcn.1601217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601217

Keywords

This article is cited by

Search

Quick links