Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription

Abstract

Inhibition of p53-activated transcription is an integral part of the mechanism by which early region 1B 55K oncoprotein (E1B-55K) from adenovirus type 5 (Ad5) contributes to complete cell transformation in combination with Ad E1A. In addition, more recent data suggest that the mode of action of the Ad protein during transformation may involve additional functions and other protein interactions. In the present study, we performed a comprehensive mutational analysis to assign further transforming functions of Ad5 E1B-55K to distinct domains within the viral polypeptide. Results from these studies show that the functions required for transformation are encoded within several patches of the 55K primary sequence, including several clustered cysteine and histidine residues, some of which match the consensus for zinc fingers. In addition, two amino-acid substitutions (C454S/C456S) created a 55K mutant protein, which had substantially reduced transforming activity. Interestingly, the same mutations neither affected binding to p53 nor inhibition of p53-mediated transactivation. Therefore, an activity necessary for efficient transformation of primary rat cells can be separated from functions required for inhibition of p53-stimulated transcription. Our data indicate that this activity is linked to the ability of the Ad5 protein to bind to components of the Mre11/Rad50/NBS1 DNA double-strand break repair complex, and/or its ability to assemble multiprotein aggregates in the cytoplasm and nucleus of transformed rat cells. These results introduce a new function for Ad5 E1B-55K and suggest that the viral protein contributes to cell transformation through p53 transcription-dependent and -independent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderson CW, Schmitt RC, Smart JE, Lewis JB . (1984). Early region 1B of adenovirus 2 encodes two coterminal proteins of 495 and 155 amino acid residues. J Virol 50: 387–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barral PM, Rusch A, Turnell AS, Gallimore PH, Byrd PJ, Dobner T et al. (2005). The interaction of the hnRNP family member E1B-AP5 with p53. FEBS Lett 579: 2752–2758.

    Article  CAS  PubMed  Google Scholar 

  • Berk AJ . (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673–7685.

    Article  CAS  PubMed  Google Scholar 

  • Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T et al. (2004). Both BC-box motifs of adenovirus protein E4orf6 are required to assemble an E3 ligase complex that degrades p53. Mol Cell Biol 24: 9619–9629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin D, Morrison MR, Marcellus RC, Querido E, Branton PE . (1999). Analysis of synthesis, stability, phosphorylation, and interacting polypeptides of the 34-kilodalton product of open reading frame 6 of the early region 4 protein of human adenovirus type 5. J Virol 73: 1245–1253.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CR, Doxsey SJ, White E, Welch WJ . (1994). Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 160: 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Budhu AS, Wang XW . (2005). Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1. Cell Cycle 4: 1510–1514.

    Article  CAS  PubMed  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22: 6610–6620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter CC, Izadpanah R, Bridge E . (2003). Evaluating the role of CRM1-mediated export for adenovirus gene expression. Virology 315: 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  PubMed  Google Scholar 

  • Dobner T, Horikoshi N, Rubenwolf S, Shenk T . (1996). Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473.

    Article  CAS  PubMed  Google Scholar 

  • Endter C, Dobner T . (2004). Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 273: 163–214.

    CAS  PubMed  Google Scholar 

  • Endter C, Hartl B, Spruss T, Hauber J, Dobner T . (2005). Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 24: 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Endter C, Kzhyshkowska J, Stauber R, Dobner T . (2001). SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 98: 11312–11317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint SJ, Gonzalez RA . (2003). Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 272: 287–330.

    CAS  PubMed  Google Scholar 

  • Flint SJ, Huang W, Goodhouse J, Kyin S . (2005). A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 337: 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Muller M et al. (2004). Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol 78: 5546–5553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukasawa K . (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230: 6–19.

    Article  CAS  PubMed  Google Scholar 

  • Gabler S, Schütt H, Groitl P, Wolf H, Shenk T, Dobner T . (1998). E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72: 7960–7971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallimore PH, Lecane PS, Roberts S, Rookes SM, Grand RJA, Parkhill J . (1997). Adenovirus type 12 early region 1B 54K protein significantly extends the life span of normal mammalian cells in culture. J Virol 71: 6629–6640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata R, Gao YS, Sztul E . (2002). Hassles with taking out the garbage: aggravating aggresomes. Traffic 3: 388–396.

    Article  CAS  PubMed  Google Scholar 

  • Grand RJ, Parkhill J, Szestak T, Rookes SM, Roberts S, Gallimore PH . (1999). Definition of a major p53 binding site on Ad2E1B58K protein and a possible nuclear localization signal on the Ad12E1B54K protein. Oncogene 18: 955–965.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg RA . (2005). Telomeres, crisis and cancer. Curr Mol Med 5: 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Franza Jr BR, Schley C . (1985). Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J Virol 55: 533–546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobom U, Dobbelstein M . (2004). E1B-55-kilodalton protein is not required to block p53-induced transcription during adenovirus infection. J Virol 78: 7685–7697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutton FG, Turnell AS, Gallimore PH, Grand RJ . (2000). Consequences of disruption of the interaction between p53 and the larger adenovirus early region 1B protein in adenovirus E1 transformed human cells. Oncogene 19: 452–462.

    Article  CAS  PubMed  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR . (1998). Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143: 1883–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindsmuller K, Groitl P, Hartl B, Blanchette P, Hauber J, Dobner T . (2007). Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc Natl Acad Sci USA 104: 6684–6689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch P, Gatfield J, Lober C, Hobom U, Lenz-Stoppler C, Roth J et al. (2001). Efficient replication of adenovirus despite the overexpression of active and nondegradable p53. Cancer Res 61: 5941–5947.

    CAS  PubMed  Google Scholar 

  • Kopito RR . (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J et al. (2000). The adenovirus type 5 E1B-55k oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19: 850–857.

    Article  PubMed  Google Scholar 

  • Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ . (2002). Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 277: 5411–5417.

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Yu A, Weiner AM . (1999). Coexpression of the adenovirus 12 E1B 55 kDa oncoprotein and cellular tumor suppressor p53 is sufficient to induce metaphase fragility of the human RNU2 locus. Virology 254: 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shevchenko A, Shevchenko A, Berk AJ . (2005). Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 79: 14004–14016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löber C, Lenz-Stöppler C, Dobbelstein M . (2002). Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53. J Gen Virol 83: 2047–2057.

    Article  PubMed  Google Scholar 

  • Maheswaran S, Englert C, Lee SB, Ezzel RM, Settleman J, Haber DA . (1998). E1B 55K sequesters WT1 along with p53 within a cytoplasmic body in adenovirus-transformed kidney cells. Oncogene 16: 2041–2050.

    Article  CAS  PubMed  Google Scholar 

  • Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D'Amico D, Bodner HK et al. (1992). p53 gene mutations in non-small-lung cell cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7: 171–180.

    CAS  PubMed  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W . (2005). Transcription-independent proapoptotic functions of p53. Curr Opin Cell Biol 17: 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Nevels M, Dobner T . (2007). Determination of the transforming activities of adenovirus oncogenes. In: Wold WS, Tollefson AE (eds). Adenovirus Methods and Protocols, 2nd edn. Humana Press Inc.: Totowa, NJ, USA. pp 187–195.

    Chapter  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T . (1997). The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci USA 94: 1206–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Beach D . (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13: 4816–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarnow P, Sullivan CA, Levine AJ . (1982). A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology 120: 510–517.

    Article  CAS  PubMed  Google Scholar 

  • Sieber T, Dobner T . (2007). Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 81: 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Teodoro JG, Branton PE . (1997). Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71: 3620–3627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teodoro JG, Halliday T, Whalen SG, Takayesu D, Graham FL, Branton PE . (1994). Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68: 776–786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YP, Wu YM, Zhu CM, Yin WG, Cai HL, Yu MJ . (2004). Transcriptional repression of hDaxx enhanced by adenovirus 12 E1B 55-kDa oncoprotein interacting with hDaxx. Chin Med J 117: 753–757.

    CAS  PubMed  Google Scholar 

  • Wendt J, Radetzki S, von Haefen C, Hemmati PG, Guner D, Schulze-Osthoff K et al. (2006). Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene 25: 972–980.

    Article  CAS  PubMed  Google Scholar 

  • Yew PR, Berk AJ . (1992). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Yew PR, Kao CC, Berk AJ . (1990). Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179: 795–805.

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Colosimo AL, Liu Y, Wan Y, Liao D . (2003). Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J Virol 77: 11809–11821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LY, Liao D . (2003). Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J Virol 77: 13171–13181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr G Akusjärvi for plasmid Cyclin G-Luc, and Dr Roger Grand for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Do 343/4-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Dobner.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Härtl, B., Zeller, T., Blanchette, P. et al. Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription. Oncogene 27, 3673–3684 (2008). https://doi.org/10.1038/sj.onc.1211039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211039

Keywords

This article is cited by

Search

Quick links