Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors

Abstract

SHP-2 protein tyrosine phosphatase plays an important role in activation of the RAS-dependent signaling. Gain-of-function mutations in the PTPN11 gene, which encodes SHP-2, have been found in the leukemia-prone developmental disorder Noonan syndrome as well as sporadic childhood leukemias, indicating that SHP-2 is a bona fide human oncoprotein. However, the role of SHP-2 mutations in non-hematological malignancies remains obscure. Here, we screened for PTPN11 mutations in primary solid tumors and identified a 1520C>A mutation that causes threonine-507 to lysine (T507K) substitution in the phosphatase domain of SHP-2 in a case of hepatocellular carcinoma. T507K SHP-2 exhibited altered substrate specificity with slightly elevated basal phosphatase activity. Upon expression in NIH3T3 cells, T507K SHP-2 induced transformed foci, which was not observed with wild type, Noonan-specific or leukemia-specific SHP-2. Furthermore, NIH3T3 cells transformed by T507K SHP-2 showed anchorage-independent growth and developed tumors in nude mice. These results indicate that quantitative and/or qualitative alteration in phosphatase activity determines the transforming potential as well as target cell/tissue spectrum of individual SHP-2 mutants as oncoproteins. Although rare in solid tumors, the identified T507K SHP-2 represents a distinct class of SHP-2 mutants with oncogenic RAS-like transforming activity, which could contribute to the development of solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agazie YM, Hayman MJ . (2003). Development of an efficient ‘substrate-trapping’ mutant of Src homology phosphotyrosine phosphatase 2 and identification of the epidermal growth factor receptor, Gab1, and three other proteins as target substrates. J Biol Chem 278: 13952–13958.

    Article  CAS  PubMed  Google Scholar 

  • Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH et al. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21: 7117–7136.

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y et al. (2005). Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37: 1038–1040.

    Article  CAS  PubMed  Google Scholar 

  • Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N et al. (2006). A role for the scaffolding adapter GAB2 in breast cancer. Nat Med 12: 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K et al. (2004). Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64: 8816–8820.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Takita J, Hiwatari M, Igarashi T, Hanada R, Kikuchi A et al. (2006). Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chromosomes Cancer 45: 583–591.

    Article  CAS  PubMed  Google Scholar 

  • Choong K, Freedman MH, Chitayat D, Kelly EN, Taylor G, Zipursky A . (1999). Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol 21: 523–527.

    Article  CAS  PubMed  Google Scholar 

  • Clark GJ, Cox AD, Graham SM, Der CJ . (1995). Biological assays for Ras transformation. Methods Enzymol 255: 395–412.

    Article  CAS  Google Scholar 

  • Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B et al. (2002). Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 71: 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Gelb BD, Tartaglia M . (2006). Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet 15: R220–R226.

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC . (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4: 688–694.

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Nakaya A, Tsutsumi R, Yokoyama K, Fujii Y, Ishikawa S et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279: 17205–17216.

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683–686.

    Article  CAS  PubMed  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE . (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell 92: 441–450.

    Article  CAS  Google Scholar 

  • Keilhack H, David FS, McGregor M, Cantley LC, Neel BG . (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 280: 30984–30993.

    Article  CAS  PubMed  Google Scholar 

  • Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K et al. (1998). Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem 273: 24839–24846.

    Article  CAS  Google Scholar 

  • Kosaki K, Suzuki T, Muroya K, Hasegawa T, Sato S, Matsuo N et al. (2002). PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J Clin Endocrinol Metab 87: 3529–3533.

    Article  CAS  PubMed  Google Scholar 

  • Lauchle JO, Braun BS, Loh ML, Shannon K . (2006). Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer 46: 579–585.

    Article  PubMed  Google Scholar 

  • Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. (2004). Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103: 2325–2331.

    Article  CAS  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, Moretti S et al. (2006). Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 166: 124–129.

    Article  CAS  PubMed  Google Scholar 

  • Mohi MG, Neel BG . (2007). The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 17: 23–30.

    Article  CAS  Google Scholar 

  • Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293.

    Article  CAS  Google Scholar 

  • Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A et al. (2006). Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38: 294–296.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M . (1994). Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol 14: 6674–6682.

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T . (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 39: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311: 1287–1290.

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nat Genet 38: 331–336.

    Article  CAS  PubMed  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM et al. (1982). Mechanism of activation of a human oncogene. Nature 300: 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104: 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V et al. (2006). Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78: 279–290.

    Article  CAS  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29: 465–468.

    Article  CAS  Google Scholar 

  • Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34: 148–150.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M . (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol 26: 261–276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank many physicians who cared for patients at the affiliated hospitals of the Division of Surgical Oncology, Graduate School of Medicine, Hokkaido University. We also thank Drs Miyuki Kida, Ryouhei Tsutsumi and Naoko Murata-Kamiya for technical support and valuable discussion. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and by a research grant from Takeda Science Foundation (MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, D., Miyamoto, M., Takahashi, A. et al. Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene 27, 3508–3515 (2008). https://doi.org/10.1038/sj.onc.1211019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211019

Keywords

This article is cited by

Search

Quick links