Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information

Abstract

Undifferentiated and poorly differentiated thyroid tumors are responsible for more than half of thyroid cancer patient deaths in spite of their low incidence. Conventional treatments do not obtain substantial benefits, and the lack of alternative approaches limits patient survival. Additionally, the absence of prognostic markers for well-differentiated tumors complicates patient-specific treatments and favors the progression of recurrent forms. In order to recognize the molecular basis involved in tumor dedifferentiation and identify potential markers for thyroid cancer prognosis prediction, we analysed the expression profile of 44 thyroid primary tumors with different degrees of dedifferentiation and aggressiveness using cDNA microarrays. Transcriptome comparison of dedifferentiated and well-differentiated thyroid tumors identified 1031 genes with >2-fold difference in absolute values and false discovery rate of <0.15. According to known molecular interaction and reaction networks, the products of these genes were mainly clustered in the MAPkinase signaling pathway, the TGF-β signaling pathway, focal adhesion and cell motility, activation of actin polymerization and cell cycle. An exhaustive search in several databases allowed us to identify various members of the matrix metalloproteinase, melanoma antigen A and collagen gene families within the upregulated gene set. We also identified a prognosis classifier comprising just 30 transcripts with an overall accuracy of 95%. These findings may clarify the molecular mechanisms involved in thyroid tumor dedifferentiation and provide a potential prognosis predictor as well as targets for new therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ain KB . (1999). Anaplastic thyroid carcinoma: a therapeutic challenge. Semin Surg Oncol 16: 64–69.

    Article  CAS  Google Scholar 

  • Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, Pollan M et al. (2007). A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Res 67: 3450–3460.

    Article  CAS  Google Scholar 

  • Al-Shahrour F, Minguez P, Tarraga J, Montaner D, Alloza E, Vaquerizas JM et al. (2006). BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res 34: W472–W476.

    Article  CAS  Google Scholar 

  • Ambroise C, McLachlan GJ . (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99: 6562–6566.

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D . (2005). Quantitative trait loci analysis using the false discovery rate. Genetics 171: 783–790.

    Article  CAS  Google Scholar 

  • Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS et al. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97: 262–267.

    Article  CAS  Google Scholar 

  • Burgdorf SK, Fischer A, Claesson MH, Kirkin AF, Dzhandzhugazyan KN, Rosenberg J . (2006). Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study. J Exp Clin Cancer Res 25: 201–206.

    CAS  PubMed  Google Scholar 

  • Chambers AF, Matrisian LM . (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89: 1260–1270.

    Article  CAS  Google Scholar 

  • Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ et al. (2006). Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16: 109–142.

    Article  Google Scholar 

  • Croizet-Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove MF . (2002). The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc Natl Acad Sci USA 99: 8277–8282.

    Article  CAS  Google Scholar 

  • DeLellis R, Lloyd RV, Heitz PU, Eng C . (2004). WHO, Tumors of Endocrine Organs. IARC Press: Lyon.

    Google Scholar 

  • Duan Z, Duan Y, Lamendola DE, Yusuf RZ, Naeem R, Penson RT et al. (2003). Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res 9: 2778–2785.

    CAS  PubMed  Google Scholar 

  • Fujimoto Y, Obara T, Ito Y, Kodama T, Aiba M, Yamaguchi K . (1990). Diffuse sclerosing variant of papillary carcinoma of the thyroid. Clinical importance, surgical treatment, and follow-up study. Cancer 66: 2306–2312.

    Article  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  Google Scholar 

  • Glinsky GV . (2006). Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 5: 1208–1216.

    Article  CAS  Google Scholar 

  • Grunert S, Jechlinger M, Beug H . (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657–665.

    Article  Google Scholar 

  • Herrero J, Valencia A, Dopazo J . (2001). A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17: 126–136.

    Article  CAS  Google Scholar 

  • Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. (2003). Gene expression predictors of breast cancer outcomes. Lancet 361: 1590–1596.

    Article  CAS  Google Scholar 

  • Lam AK, Lo CY . (2006). Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution. Ann Surg Oncol 13: 176–181.

    Article  Google Scholar 

  • Medina I, Montaner D, Tarraga J, Dopazo J . (2007). Prophet, a web-based tool for class prediction using microarray data. Bioinformatics 23: 390–391.

    Article  CAS  Google Scholar 

  • Montaner D, Tarraga J, Huerta-Cepas J, Burguet J, Vaquerizas JM, Conde L et al. (2006). Next station in microarray data analysis: GEPAS. Nucleic Acids Res 34: W486–W491.

    Article  CAS  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267–273.

    Article  CAS  Google Scholar 

  • Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F et al. (2005). Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis 26: 1021–1034.

    Article  CAS  Google Scholar 

  • Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F et al. (2003). BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88: 5399–5404.

    Article  CAS  Google Scholar 

  • Onda M, Emi M, Yoshida A, Miyamoto S, Akaishi J, Asaka S et al. (2004). Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes. Endocr Relat Cancer 11: 843–854.

    Article  CAS  Google Scholar 

  • Pallante P, Berlingieri MT, Troncone G, Kruhoffer M, Orntoft TF, Viglietto G et al. (2005). UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas. Br J Cancer 93: 464–471.

    Article  CAS  Google Scholar 

  • Randolph GW, Daniels GH . (2002). Radioactive iodine lobe ablation as an alternative to completion thyroidectomy for follicular carcinoma of the thyroid. Thyroid 12: 989–996.

    Article  Google Scholar 

  • Rocha AS, Soares P, Fonseca E, Cameselle-Teijeiro J, Oliveira MC, Sobrinho-Simoes M . (2003). E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology 42: 580–587.

    Article  CAS  Google Scholar 

  • Sakamoto A, Kasai N, Sugano H . (1983). Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high-risk group of papillary and follicular carcinomas. Cancer 52: 1849–1855.

    Article  CAS  Google Scholar 

  • Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR et al. (2003). Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3: 377–386.

    Article  CAS  Google Scholar 

  • Siegel PM, Massague J . (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3: 807–821.

    Article  CAS  Google Scholar 

  • Slettenaar VI, Wilson JL . (2006). The chemokine network: a target in cancer biology? Adv Drug Deliv Rev 58: 962–974.

    Article  CAS  Google Scholar 

  • Sobrinho-Simoes M, Sambade C, Fonseca E, Soares P . (2002). Poorly differentiated carcinomas of the thyroid gland: a review of the clinicopathologic features of a series of 28 cases of a heterogeneous, clinically aggressive group of thyroid tumors. Int J Surg Pathol 10: 123–131.

    Article  Google Scholar 

  • Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V et al. (2005). Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90: 928–935.

    Article  CAS  Google Scholar 

  • Tang L, Dai DL, Su M, Martinka M, Li G, Zhou Y . (2006). Aberrant expression of collagen triple helix repeat containing 1 in human solid cancers. Clin Cancer Res 12: 3716–3722.

    Article  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  Google Scholar 

  • Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S et al. (2007). Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104: 2803–2808.

    Article  CAS  Google Scholar 

  • Vini L, Harmer C . (2002). Management of thyroid cancer. Lancet Oncol 3: 407–414.

    Article  Google Scholar 

  • Voigt C, Holzapfel H, Paschke R . (2000). Expression of beta-arrestins in toxic and cold thyroid nodules. FEBS Lett 486: 208–212.

    Article  CAS  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775–1779.

    Article  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  Google Scholar 

  • Zavadil J, Bottinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    Article  CAS  Google Scholar 

  • Zou M, Al-Baradie RS, Al-Hindi H, Farid NR, Shi Y . (2005). S100A4 (Mts1) gene overexpression is associated with invasion and metastasis of papillary thyroid carcinoma. Br J Cancer 93: 1277–1284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FIS Project nos. PI052509, PI041313, ISCIII CIBER-BBN and ISCIII CIBER-ER from the Spanish Ministry of Health, and Project BIO 2005-01078 from the Spanish Ministry of Education and Science, and National Institute of Bioinformatics (www.inab.org), a platform of Genoma España. Cristina Montero-Conde is a recipient of a predoctoral fellowship from the Basque Country Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Robledo or D Mauricio.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero-Conde, C., Martín-Campos, J., Lerma, E. et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 27, 1554–1561 (2008). https://doi.org/10.1038/sj.onc.1210792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210792

Keywords

This article is cited by

Search

Quick links