Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cytokine receptors and hematopoietic differentiation

Abstract

Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL . (1997). Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89: 1033–1041.

    CAS  PubMed  Google Scholar 

  • Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D . (1996). Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87: 2162–2170.

    CAS  PubMed  Google Scholar 

  • Barner M, Mohrs M, Brombacher F, Kopf M . (1998). Differences between IL-4R alpha-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Curr Biol 8: 669–672.

    CAS  PubMed  Google Scholar 

  • Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B et al. (2004). Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 279: 35486–35493.

    Article  CAS  PubMed  Google Scholar 

  • Betz UA, Bloch W, van den Broek M, Yoshida K, Taga T, Kishimoto T et al. (1998). Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects. J Exp Med 188: 1955–1965.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor AB, Orkin SH . (2001). Hematopoietic development: a balancing act. Curr Opin Genet Dev 11: 513–519.

    CAS  PubMed  Google Scholar 

  • Carver-Moore K, Broxmeyer HE, Luoh SM, Cooper S, Peng J, Burstein SA et al. (1996). Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88: 803–808.

    CAS  PubMed  Google Scholar 

  • Constantinescu SN, Keren T, Socolovsky M, Nam H, Henis YI, Lodish HF . (2001). Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 98: 4379–4384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea AD . (1994). Hematopoietic growth factors and the regulation of differentiative decisions. Curr Opin Cell Biol 6: 804–808.

    PubMed  Google Scholar 

  • DeChiara TM, Vejsada R, Poueymirou WT, Acheson A, Suri C, Conover JC et al. (1995). Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83: 313–322.

    CAS  PubMed  Google Scholar 

  • DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K . (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 92: 377–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans CA, Pierce A, Winter SA, Spooncer E, Heyworth CM, Whetton AD . (1999). Activation of granulocyte–macrophage colony-stimulating factor and interleukin-3 receptor subunits in a multipotential hematopoietic progenitor cell line leads to differential effects on development. Blood 94: 1504–1514.

    CAS  PubMed  Google Scholar 

  • Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM . (1993). Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74: 823–832.

    CAS  PubMed  Google Scholar 

  • Fox N, Priestley G, Papayannopoulou T, Kaushansky K . (2002). Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Invest 110: 389–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, Harris NL et al. (2007). IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 109: 2023–2031.

    CAS  PubMed  Google Scholar 

  • Fukunaga R, Ishizaka-Ikeda E, Nagata S . (1993). Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74: 1079–1087.

    CAS  PubMed  Google Scholar 

  • Gainsford T, Nandurkar HH, Metcalf D, Robb L, Begley CG, Alexander WS . (2000). The residual megakaryocyte and platelet production in c-Mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin -11 or leukemia inhibitory factor. Blood 95: 528–534.

    CAS  PubMed  Google Scholar 

  • Goldsmith MA, Mikami A, You Y, Liu KD, Thomas L, Pharr P et al. (1998). Absence of cytokine receptor-dependent specificity in red blood cell differentiation in vivo. Proc Natl Acad Sci USA 95: 7006–7011.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW . (1994). Thrombocytopenia in c-mpl-deficient mice. Science 265: 1445–1447.

    CAS  PubMed  Google Scholar 

  • Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A . (1990). Molecular cloning of a second subunit of the receptor for human granulocyte–macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA 87: 9655–9659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heim MH . (1999). The Jak–STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 19: 75–120.

    CAS  PubMed  Google Scholar 

  • Hisakawa H, Sugiyama D, Nishijima I, Xu MJ, Wu H, Nakao K et al. (2001). Human granulocyte–macrophage colony-stimulating factor (hGM-CSF) stimulates primitive and definitive erythropoiesis in mouse embryos expressing hGM-CSF receptors but not erythropoietin receptors. Blood 98: 3618–3625.

    CAS  PubMed  Google Scholar 

  • Horan T, Wen J, Narhi L, Parker V, Garcia A, Arakawa T et al. (1996). Dimerization of the extracellular domain of granuloycte-colony stimulating factor receptor by ligand binding: a monovalent ligand induces 2:2 complexes. Biochemistry 35: 4886–4896.

    CAS  PubMed  Google Scholar 

  • Ichihara M, Hara T, Takagi M, Cho LC, Gorman DM, Miyajima A . (1995). Impaired interleukin-3 (IL-3) response of the A/J mouse is caused by a branch point deletion in the IL-3 receptor alpha subunit gene. EMBO J 14: 939–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki-Arai J, Iwasaki H, Miyamoto T, Watanabe S, Akashi K . (2003). Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion. J Exp Med 197: 1311–1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jegalian AG, Acurio A, Dranoff G, Wu H . (2002). Erythropoietin receptor haploinsufficiency and in vivo interplay with granulocyte–macrophage colony-stimulating factor and interleukin 3. Blood 99: 2603–2605.

    CAS  PubMed  Google Scholar 

  • Just U, Stocking C, Spooncer E, Dexter TM, Ostertag W . (1991). Expression of the GM-CSF gene after retroviral transfer in hematopoietic stem cell lines induces synchronous granulocyte–macrophage differentiation. Cell 64: 1163–1173.

    CAS  PubMed  Google Scholar 

  • Kaushansky K . (2006). Lineage-specific hematopoietic growth factors. N Engl J Med 354: 2034–2045.

    CAS  PubMed  Google Scholar 

  • Kaushansky K, Fox N, Lin NL, Liles WC . (2002). Lineage-specific growth factors can compensate for stem and progenitor cell deficiencies at the postprogenitor cell level: an analysis of doubly TPO- and G-CSF receptor-deficient mice. Blood 99: 3573–3578.

    CAS  PubMed  Google Scholar 

  • Kertesz N, Wu J, Chen TH, Sucov HM, Wu H . (2004). The role of erythropoietin in regulating angiogenesis. Dev Biol 276: 101–110.

    CAS  PubMed  Google Scholar 

  • Kieran MW, Perkins AC, Orkin SH, Zon LI . (1996). Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci USA 93: 9126–9131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby SL, Cook DN, Walton W, Smithies O . (1996). Proliferation of multipotent hematopoietic cells controlled by a truncated erythropoietin receptor transgene. Proc Natl Acad Sci USA 93: 9402–9407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K et al. (2000). Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407: 383–386.

    CAS  PubMed  Google Scholar 

  • Lagasse E, Weissman IL . (1997). Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89: 1021–1031.

    CAS  PubMed  Google Scholar 

  • Li M, Sendtner M, Smith A . (1995). Essential function of LIF receptor in motor neurons. Nature 378: 724–727.

    CAS  PubMed  Google Scholar 

  • Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C et al. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84: 1737–1746.

    CAS  PubMed  Google Scholar 

  • Lin CS, Lim SK, D’Agati V, Costantini F . (1996). Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 10: 154–164.

    CAS  PubMed  Google Scholar 

  • Liu F, Poursine-Laurent J, Wu HY, Link DC . (1997). Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood 90: 2583–2590.

    CAS  PubMed  Google Scholar 

  • Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC . (1996). Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5: 491–501.

    CAS  PubMed  Google Scholar 

  • Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA . (1999). Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283: 987–990.

    CAS  PubMed  Google Scholar 

  • Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S et al. (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9: 669–676.

    CAS  PubMed  Google Scholar 

  • Maki K, Sunaga S, Komagata Y, Kodaira Y, Mabuchi A, Karasuyama H et al. (1996). Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci USA 93: 7172–7177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maraskovsky E, O’Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A . (1997). Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89: 1011–1019.

    CAS  PubMed  Google Scholar 

  • McArthur GA, Rohrschneider LR, Johnson GR . (1994). Induced expression of c-fms in normal hematopoietic cells shows evidence for both conservation and lineage restriction of signal transduction in response to macrophage colony-stimulating factor. Blood 83: 972–981.

    CAS  PubMed  Google Scholar 

  • McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D . (1997). Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89: 65–71.

    CAS  PubMed  Google Scholar 

  • Metcalf D . (1984). Clonal Culture of Hemopoietic Cells: Techniques and Applications. Elsevier: Amsterdam, The Netherlands.

    Google Scholar 

  • Metcalf D . (1998). Regulatory mechanisms controlling hematopoiesis: principles and problems. Stem Cells 16(Suppl 1): 3–11.

    PubMed  Google Scholar 

  • Metcalf D, Burgess AW . (1982). Clonal analysis of progenitor cell commitment of granulocyte or macrophage production. J Cell Physiol 111: 275–283.

    CAS  PubMed  Google Scholar 

  • Nandurkar HH, Robb L, Tarlinton D, Barnett L, Kontgen F, Begley CG . (1997). Adult mice with a targeted mutation of the IL-11 receptor (IL11Ra) display normal hematopoiesis. Blood 90: 2148–2159.

    CAS  PubMed  Google Scholar 

  • Nicola NA . (1989). Hemopoietic cell growth factors and their receptors. Annu Rev Biochem 58: 45–77.

    CAS  PubMed  Google Scholar 

  • Nicola NA (ed). (1994). Guidebook to Cytokines and Their Receptors. Oxford University Press: Oxford/New York/Tokyo.

    Google Scholar 

  • Nicola NA, Robb L, Metcalf D, Cary D, Drinkwater CC, Begley CG . (1996). Functional inactivation in mice of the gene for the interleukin-3 (IL-3) specific receptor β-chain: implications for Il-3 function and the mechanism of receptor transmodulation in hematopoietic cells. Blood 87: 2665–2674.

    CAS  PubMed  Google Scholar 

  • Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, McNeil T et al. (1995). Mice deficient for the IL-3/GM-CSF/IL-5 βc receptor exhibit lung pathology and impaired immune response, while βIL3 receptor-deficient mice are normal. Immunity 2: 211–222.

    CAS  PubMed  Google Scholar 

  • Orkin SH . (2000). Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1: 57–64.

    CAS  PubMed  Google Scholar 

  • Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A et al. (2002). A critical role for IL-21 in regulating immunoglobulin production. Science 298: 1630–1634.

    CAS  PubMed  Google Scholar 

  • Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC et al. (1994). Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180: 1955–1960.

    CAS  PubMed  Google Scholar 

  • Pharr PN, Ogawa M, Hofbauer A, Longmore GD . (1994). Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci USA 91: 7482–7486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porteu F, Rouyez MC, Cocault L, Benit L, Charon M, Picard F et al. (1996). Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol Cell Biol 16: 2473–2482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards MK, Liu F, Iwasaki H, Akashi K, Link DC . (2003). Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood 102: 3562–3568.

    CAS  PubMed  Google Scholar 

  • Robb L, Drinkwater C, Metcalf D, Li R, Kontgen K, Nicola N et al. (1995). Hematopoietic and lung abnormalities in mice with a null mutation of the common β subunit of the receptors for granulocyte–macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 92: 9565–9569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robb L, Li R, Hartley L, Nandurkar H, Koentgen F, Begley CG . (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med 4: 303–308.

    CAS  PubMed  Google Scholar 

  • Scott CL, Robb L, Mansfield R, Alexander WS, Begley CG . (2000). Granulocyte–macrophage colony-stimulating factor is not responsible for residual thrombopoiesis in mpl null mice. Exp Hematol 28: 1001–1007.

    CAS  PubMed  Google Scholar 

  • Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC . (2002). G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17: 413–423.

    CAS  PubMed  Google Scholar 

  • Semerad CL, Poursine-Laurent J, Liu F, Link DC . (1999). A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 11: 153–161.

    CAS  PubMed  Google Scholar 

  • Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR . (1997). Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte–macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 90: 3037–3049.

    CAS  PubMed  Google Scholar 

  • Shivdasani RA, Orkin SH . (1996). The transcriptional control of hematopoiesis. Blood 87: 4025–4039.

    CAS  PubMed  Google Scholar 

  • Socolovsky M, Dusanter-Fourt I, Lodish HF . (1997). The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem 272: 14009–14012.

    CAS  PubMed  Google Scholar 

  • Solar GP, Kerr WG, Zeigler FC, Hess D, Donahue C, de Sauvage FJ et al. (1998). Role of c-mpl in early hematopoiesis. Blood 92: 4–10.

    CAS  PubMed  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JAM et al. (1994). Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91: 5592–5596.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ, Skoda RC . (1999). Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci USA 96: 698–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Duncan GS, Takimoto H, Mak TW . (1997). Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med 185: 499–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamada T, Honjo E, Maeda Y, Okamoto T, Ishibashi M, Tokunaga M et al. (2006). Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc Natl Acad Sci USA 103: 3135–3140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A . (2003). Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 102: 3154–3162.

    CAS  PubMed  Google Scholar 

  • Till JE, McCulloch EA, Siminovitch L . (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51: 29–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J et al. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26: 1269–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggitt D, Koblar SA et al. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121: 1283–1299.

    CAS  PubMed  Google Scholar 

  • Watowich SS, Wu H, Socolovsky M, Klingmuller U, Constantinescu SN, Lodish HF . (1996). Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol 12: 91–128.

    CAS  PubMed  Google Scholar 

  • Wells JA, de Vos AM . (1996). Hematopoietic receptor complexes. Annu Rev Biochem 65: 609–634.

    CAS  PubMed  Google Scholar 

  • Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW . (1995). Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3: 521–530.

    CAS  PubMed  Google Scholar 

  • Wormald S, Hilton DJ . (2004). Inhibitors of cytokine signal transduction. J Biol Chem 279: 821–824.

    CAS  PubMed  Google Scholar 

  • Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML . (1999). Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126: 3597–3605.

    CAS  PubMed  Google Scholar 

  • Wu H, Liu X, Jaenisch R, Lodish HF . (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83: 59–67.

    CAS  PubMed  Google Scholar 

  • Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T et al. (1996a). Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 93: 407–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H et al. (1996b). Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4: 483–494.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all the scientists past and present of the Cancer and Hematology Division, at the Walter and Eliza Hall Institute for sharing with me their interest and vast knowledge of hematopoiesis. In particular, I thank Professor Donald Metcalf for his help and enthusiasm. Work in the author's laboratory is supported by grants from the National Institute of Health (CA-22556) and the National Health and Medical Research Council of Australia (Program Grants 257500, 461219, Project Grant 321704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robb, L. Cytokine receptors and hematopoietic differentiation. Oncogene 26, 6715–6723 (2007). https://doi.org/10.1038/sj.onc.1210756

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210756

Keywords

This article is cited by

Search

Quick links