Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Amyloid-β precursor-like protein APLP1 is a novel p53 transcriptional target gene that augments neuroblastoma cell death upon genotoxic stress

Abstract

The tumor suppressor p53 is a key modulator of the cellular stress response, inducing cell-cycle arrest, apoptosis, senescence and cell differentiation. To evaluate further the molecular mechanism underlying p53 function, the transcriptional profiles of proliferating and senescent WI-38 cells, both wild-type p53 expressers and counterparts with an inactivated p53, were compared by DNA microarray analysis. In particular, the amyloid-β precursor-like protein 1 (APLP1) is induced in senescent cells in a p53-dependent manner. APLP1 was confirmed to be a novel transcriptional target of p53 by in vivo and in vitro characterization of a p53 responsive element found in the first intron of the APLP1 gene locus. APLP1 knockdown experiments demonstrate that APLP1 is required for the proliferation of fibroblastic and epithelial cells. Moreover, depletion of APLP1 expression diminishes stress-induced apoptosis of neural cells, whereas ectopic APLP1 expression augments apoptosis. Based on these data, a mechanism is proposed whereby p53-dependent induction of APLP1 is involved in neural cell death, and which may exacerbate neuronal cell loss in some acute or chronic neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG . (2003). Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161: 41–54.

    Article  CAS  Google Scholar 

  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW et al. (2000). PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 14: 704–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bargonetti J, Manfredi JJ . (2002). Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14: 86–91.

    Article  CAS  Google Scholar 

  • Bayer TA, Cappai R, Masters CL, Beyreuther K, Multhaup G . (1999). It all sticks together – the APP-related family of proteins and Alzheimer's disease. Mol Psychiatry 4: 524–528.

    Article  CAS  Google Scholar 

  • Bayer TA, Paliga K, Weggen S, Wiestler OD, Beyreuther K, Multhaup G . (1997). Amyloid precursor-like protein 1 accumulates in neuritic plaques in Alzheimer's disease. Acta Neuropathol (Berl) 94: 519–524.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2: 243–247.

    Article  CAS  Google Scholar 

  • Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS et al. (1999). Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19: 7860–7869.

    Article  CAS  Google Scholar 

  • Culmsee C, Mattson MP . (2005). p53 in neuronal apoptosis. Biochem Biophys Res Commun 331: 761–777.

    Article  CAS  Google Scholar 

  • de la Monte SM, Sohn YK, Wands JR . (1997). Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer's disease. J Neurol Sci 152: 73–83.

    Article  CAS  Google Scholar 

  • Eggert S, Paliga K, Soba P, Evin G, Masters CL, Weidemann A et al. (2004). The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves alpha-, beta-, gamma-, and epsilon-like cleavages: modulation of APLP-1 processing by n-glycosylation. J Biol Chem 279: 18146–18156.

    Article  CAS  Google Scholar 

  • el-Deiry WS . (1998). Regulation of p53 downstream genes. Semin Cancer Biol 8: 345–357.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  Google Scholar 

  • Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, Koo EH et al. (2002). Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 82: 283–294.

    Article  CAS  Google Scholar 

  • Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E et al. (1997). Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 25: 151–157.

    Article  CAS  Google Scholar 

  • Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rulicke T et al. (2000). Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20: 7951–7963.

    Article  CAS  Google Scholar 

  • Kim TW, Wu K, Xu JL, McAuliffe G, Tanzi RE, Wasco W et al. (1995). Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. Brain Res Mol Brain Res 32: 36–44.

    Article  CAS  Google Scholar 

  • Ko SY, Lin SC, Chang KW, Wong YK, Liu CJ, Chi CW et al. (2004). Increased expression of amyloid precursor protein in oral squamous cell carcinoma. Int J Cancer 111: 727–732.

    Article  CAS  Google Scholar 

  • LaFerla FM, Hall CK, Ngo L, Jay G . (1996). Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 98: 1626–1632.

    Article  CAS  Google Scholar 

  • Li Q, Sudhof TC . (2004). Cleavage of amyloid-beta precursor protein and amyloid-beta precursor-like protein by BACE 1. J Biol Chem 279: 10542–10550.

    Article  CAS  Google Scholar 

  • Lorent K, Overbergh L, Moechars D, De Strooper B, Van Leuven F, Van den Berghe H . (1995). Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40 000 molecular weight receptor-associated protein. Neuroscience 65: 1009–1025.

    Article  CAS  Google Scholar 

  • Mattson MP . (2004). Pathways towards and away from Alzheimer's disease. Nature 430: 631–639.

    Article  CAS  Google Scholar 

  • McNamara MJ, Ruff CT, Wasco W, Tanzi RE, Thinakaran G, Hyman BT . (1998). Immunohistochemical and in situ analysis of amyloid precursor-like protein-1 and amyloid precursor-like protein-2 expression in Alzheimer disease and aged control brains. Brain Res 804: 45–51.

    Article  CAS  Google Scholar 

  • Meng JY, Kataoka H, Itoh H, Koono M . (2001). Amyloid beta protein precursor is involved in the growth of human colon carcinoma cell in vitro and in vivo. Int J Cancer 92: 31–39.

    Article  CAS  Google Scholar 

  • Milyavsky M, Tabach Y, Shats I, Erez N, Cohen Y, Tang X et al. (2005). Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res 65: 4530–4543.

    Article  CAS  Google Scholar 

  • Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G . (1996). Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16: 1126–1137.

    Article  CAS  Google Scholar 

  • Morrison RS, Kinoshita Y . (2000). The role of p53 in neuronal cell death. Cell Death Differ 7: 868–879.

    Article  CAS  Google Scholar 

  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R et al. (1996). Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci USA 93: 10309–10314.

    Article  CAS  Google Scholar 

  • Pietrzik CU, Hoffmann J, Stober K, Chen CY, Bauer C, Otero DA et al. (1998). From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells. Proc Natl Acad Sci USA 95: 1770–1775.

    Article  CAS  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . (1997). A model for p53-induced apoptosis. Nature 389: 300–305.

    Article  CAS  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH . (2001). Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13: 332–337.

    Article  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  Google Scholar 

  • Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M et al. (2006). Regulation of AIF expression by p53. Cell Death Differ 13: 2140–2149.

    Article  CAS  Google Scholar 

  • Takahashi M, Dore S, Ferris CD, Tomita T, Sawa A, Wolosker H et al. (2000). Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer's disease. Neuron 28: 461–473.

    Article  CAS  Google Scholar 

  • Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V . (2004). Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23: 5759–5769.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Ward MW, Kogel D, Prehn JH . (2004). Neuronal apoptosis: BH3-only proteins the real killers? J Bioenerg Biomembr 36: 295–298.

    Article  CAS  Google Scholar 

  • Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F . (1992). Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci USA 89: 10758–10762.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Center of Excellence grant from the Flight Attendant Medical Research Institute (FAMRI), EC FP6 grant LSHC-CT-2004-503576 and Yad Abraham Center for Cancer Diagnosis and Therapy. This publication reflects our views and not necessarily those of the European Community. The EC is not liable for any use that may be made of the information contained herein. VR is the incumbent of the Norman and Helen Asher Professorial Chair Cancer Research at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Rotter.

Additional information

Supplementary Information accompanies the paper on the Oncogene Web site (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Milyavsky, M., Goldfinger, N. et al. Amyloid-β precursor-like protein APLP1 is a novel p53 transcriptional target gene that augments neuroblastoma cell death upon genotoxic stress. Oncogene 26, 7302–7312 (2007). https://doi.org/10.1038/sj.onc.1210542

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210542

Keywords

This article is cited by

Search

Quick links