Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A

Abstract

Overexpression of Aurora-A oncogene has been shown to induce genomic instability and tumorigenesis. Cellular levels of Aurora-A are regulated by multiple mechanisms including the proteasome-dependent degradation of Aurora-A protein. Cell-cycle-dependent turnover of Aurora-A protein is mediated by cdh1 through ubiquitin (Ub)- and proteasome-dependent pathway. However, Aurora-A kinase interacting protein 1 (AURKAIP1), a negative regulator of Aurora-A, also promotes proteasome-dependent Aurora-A degradation through an Ub-independent mechanism. In an attempt to understand how AURKAIP1 promotes Aurora-A degradation through Ub-independent pathway, we demonstrate here that antizyme1 (Az1), a well-studied mediator of Ub-independent protein degradation pathway, regulates Aurora-A protein stability. We show that ectopic or polyamine-induced expression of Az1 can lower the steady-state levels of Aurora-A. The effect of Az1 on Aurora-A turnover was shown to be proteasome-dependent, but Ub-independent. Az1 interacts with Aurora-A in vivo and the interaction between Aurora-A and Az1 is essential for the Az1-mediated Aurora-A degradation. Furthermore, we observed that AURKAIP1 could not promote degradation of Aurora-A mutant, which is defective in Az1 interaction. Coexpression of the Az inhibitor (AzI), which downregulates Az1 functions, also abrogated AURKAIP1-mediated degradation of Aurora-A. We further demonstrated that AURKAIP1, Az1 and Aurora-A could exist as a ternary complex and AURKAIP1 enhances the interaction between Az1 and Aurora-A. We propose that AURKAIP1 might function upstream of the Az1 by enhancing the binding affinity of Az1 to Aurora-A to promote recognition, targeting to proteasome and subsequent degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Asher G, Tsevetkov P, Kahana C, Shaul Y . (2005). A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19: 316–321.

    Article  CAS  Google Scholar 

  • Bercovich Z, Rosenberg-Hasson Y, Ciechanover A, Kahana C . (1989). Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent J. Biol Chem 264: 15949–15952.

    CAS  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B et al. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17: 3052–3065.

    Article  CAS  Google Scholar 

  • Buschhorn HM, Klein RR, Chambers SM, Hardy MC, Green S, Bearss D et al. (2005). Aurora-A over-expression in high-grade PIN lesions and prostate cancer. Prostate 64: 341–346.

    Article  CAS  Google Scholar 

  • Chen H, MacDonald A, Coffino P . (2002). Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. J Biol Chem 277: 45957–45961.

    Article  CAS  Google Scholar 

  • Coffino P . (2001). Regulation of cellular polyamines by antizyme. Nature Rev 2: 188–194.

    Article  CAS  Google Scholar 

  • Crane R, Klofper A, Ruderman JV . (2004). Requirements for the destruction of human Aurora-A. J Cell Sci 117: 5975–5983.

    Article  CAS  Google Scholar 

  • Feith DJ, Shantz LM, Pegg AE . (2001). Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61: 6073–6081.

    CAS  Google Scholar 

  • Fong LY, Feith DJ, Pegg AE . (2003). Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitroso methyl-benzylamine-induced forestomach carcinogenesis. Cancer Res 63: 3945–3954.

    CAS  Google Scholar 

  • Gandre S, Bercovich Z, Kahana C . (2002). Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269: 1316–1322.

    Article  CAS  Google Scholar 

  • Gardini G, Cravanzola C, Autelli R, Testore G, Cesa R, Morando L et al. (2003). Agmatine inhibits the proliferation of rat hepatoma cells by modulation of polyamine metabolism. J Hepatol 39: 793–799.

    Article  CAS  Google Scholar 

  • Gerner EW, Meyskens Jr FL . (2004). Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4: 781–792.

    Article  CAS  Google Scholar 

  • Glass JR, Gerner EW . (1987). Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism. J Cell Physiol 130: 133–141.

    Article  CAS  Google Scholar 

  • Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA et al. (2003). Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 9: 1420–1426.

    CAS  Google Scholar 

  • Hoffman DW, Carroll D, Martinez N, Hackert ML . (2005). Solution structure of a conserved domain of antizyme: a protein regulator of polyamines. Biochemistry 44: 11777–11785.

    Article  CAS  Google Scholar 

  • Honda K, Mihara H, Kato Y, Yamaguchi A, Tanaka H, Yasuda H et al. (2000). Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 19: 2812–2819.

    Article  CAS  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF . (2000). Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acid Res 28: 3185–3196.

    Article  CAS  Google Scholar 

  • Iwata S, Sato Y, Asada M, Takagi M, Tsujimoto A, Inaba T et al. (1999). Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene 18: 165–172.

    Article  CAS  Google Scholar 

  • Jin Y, Lee H, Zeng SX, Dai MS, Lu H . (2003). MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 22: 6365–6377.

    Article  CAS  Google Scholar 

  • Kiat LS, Hui KM, Gopalan G . (2002). Aurora-A kinase interacting protein (AIP), a novel negative regulator of human Aurora-A kinase. J Biol Chem 277: 45558–45565.

    Article  CAS  Google Scholar 

  • Koike C, Chao DT, Zetter BR . (1999). Sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cells. Cancer Res 59: 6109–6112.

    CAS  Google Scholar 

  • Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K et al. (2003). Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 9: 991–997.

    CAS  Google Scholar 

  • Li X, Coffino P . (1992). Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Mol Cell Biol 12: 3556–3562.

    Article  CAS  Google Scholar 

  • Li X, Coffino P . (1993). Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol Cell Biol 13: 2377–2383.

    Article  CAS  Google Scholar 

  • Lim SK, Gopalan G . (2007). Aurora-A kinase interacting protein 1 (AURKAIP1) promotes Aurora-a degradation through alternative ubiquitin-independent pathway. Biochem J 403: 119–127.

    Article  CAS  Google Scholar 

  • Lin Y, Martin J, Gruendler C, Farley J, Meng X, Li BY et al. (2002). A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3: 15.

    Article  Google Scholar 

  • Littlepage LE, Ruderman JV . (2002). Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 16: 2274–2285.

    Article  CAS  Google Scholar 

  • Mangold U . (2006). Antizyme inhibitor: mysterious modulator of cell proliferation. Cell Mol Life Sci 63: 2095–2101.

    Article  CAS  Google Scholar 

  • Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432: 775–779.

    Article  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T et al. (1992). Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360: 597–599.

    Article  CAS  Google Scholar 

  • Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M et al. (2004). Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279: 41504–41511.

    Article  CAS  Google Scholar 

  • Rom E, Kahana C . (1994). Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc Natl Acad Sci USA 91: 3959–3963.

    Article  CAS  Google Scholar 

  • Rosenberg-Hasson Y, Bercovich Z, Ciechanover A, Kahana C . (1989). Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. Eur J Biochem 185: 469–474.

    Article  CAS  Google Scholar 

  • Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K et al. (2001). Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer 84: 824–831.

    Article  CAS  Google Scholar 

  • Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ . (1998). Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273: 15313–15315.

    Article  CAS  Google Scholar 

  • Sdek P, Ying H, Chang DLF, Qiu W, Zheng H, Touitou R et al. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20: 699–708.

    Article  CAS  Google Scholar 

  • Strous GJ, van Kerkhof P, Govers R, Ciechanover A, Schwartz AL . (1996). The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J 15: 3806–3812.

    Article  CAS  Google Scholar 

  • Taguchi S, Honda K, Sugiura K, Yamaguchi A, Furukawa K, Urano T . (2002). Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett 519: 59–65.

    Article  CAS  Google Scholar 

  • Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y . (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59: 2041–2044.

    CAS  Google Scholar 

  • Walter AO, Seghezzi W, Korver W, Sheung J, Lees E . (2000). The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.

    Article  CAS  Google Scholar 

  • Yu X, Minter-Dykhouse K, Malureanu LZhao WM, Zhang D, Merkle CJ, Ward IM et al. (2005). Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37: 401–406.

    Article  CAS  Google Scholar 

  • Zhang M, Pickart CM, Coffino P . (2003). Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22: 1488–1496.

    Article  CAS  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ger J Strous and Dr Issacs for providing us the ts20-CHO and AT2.1 rat prostate carcinoma cell lines, respectively. We also thank Dr Geisen, Dr Coffino and Dr Prochownik for the p27kip1, mouse ODC and cyclinB1 expression plasmids, respectively. We acknowledge the generosity of Dr John Mitchell for the anti-antizyme antibody. This work was supported by the National Medical Research Council of Singapore in the form of a research grant (NMRC/0815/2003) to GG and as Institutional Block Grant to National Cancer Centre, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gopalan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Gopalan, G. Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 26, 6593–6603 (2007). https://doi.org/10.1038/sj.onc.1210482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210482

Keywords

This article is cited by

Search

Quick links