Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

From Tpr-Met to Met, tumorigenesis and tubes

Abstract

The receptor for hepatocyte growth factor (HGF)/scatter factor (SF), Met, controls a program of invasive epithelial growth through the coordination of cell proliferation and survival, cell migration and epithelial morphogenesis. This process is important during embryogenesis and for organ regeneration in the adult. However, when deregulated the HGF/SF-Met signaling axis contributes to tumorigenesis and metastasis. Studies on the oncogenic activation of the Met receptor have shed light on the molecular mechanisms underlying the oncogenic activation of receptor tyrosine kinase (RTKs). More than a decade ago, work on the Met related oncogene, Tpr-Met, revealed the mechanism for activation of RTK-derived oncogenes generated following chromosomal translocation. More recently, studies on the mechanisms of downregulation of the Met RTK highlight a role for loss of downregulation in RTK oncogenic activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbe S et al. (2005). Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol 25: 9632–9645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bache KG, Slagsvold T, Stenmark H . (2004). Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 23: 2707–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Gur G, Yarden Y . (2003). Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci USA 100: 2438–2443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.

    CAS  PubMed  Google Scholar 

  • Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C . (2004). Met provides essential signals for liver regeneration. Proc Natl Acad Sci USA 101: 10608–10613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan A-L, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804.

    CAS  PubMed  Google Scholar 

  • Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W . (1995). Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol 131: 1573–1586.

    CAS  PubMed  Google Scholar 

  • Buchberger A . (2002). From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12: 216–221.

    CAS  PubMed  Google Scholar 

  • Carter S, Urbe S, Clague MJ . (2004). The met receptor degradation pathway: requirement for Lys48-linked polyubiquitin independent of proteasome activity. J Biol Chem 279: 52835–52839.

    CAS  PubMed  Google Scholar 

  • Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311: 29–33.

    CAS  PubMed  Google Scholar 

  • Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M . (1997). Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 138: 423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies GC, Ettenberg SA, Coats AO, Mussante M, Ravichandran S, Collins J et al. (2004). Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23: 7104–7115.

    CAS  PubMed  Google Scholar 

  • Dean M, Park M, Vande Woude GF . (1987). Characterization of the rearranged tpr-met oncogene breakpoint. Mol Cell Biol 7: 921–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL et al. (2003). Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 278: 28950–28960.

    CAS  PubMed  Google Scholar 

  • Ebens A, Brose K, Leonardo ED, Hanson MG, Bladt F, Birchmeier C et al. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17: 1157–1172.

    CAS  PubMed  Google Scholar 

  • Fixman ED, Fournier TM, Kamikura DM, Naujokas MA, Park M . (1996). Pathways downstream of Shc and Grb2 are required for cell transformation by the Tpr-Met oncoprotein. J Biol Chem 271: 13116–13122.

    CAS  PubMed  Google Scholar 

  • Fixman ED, Naujokas MA, Rodrigues GA, Moran MF, Park M . (1995). Efficient cell transformation by the Tpr-Met oncoprotein is dependent upon tyrosine 489 in the carboxy-terminus. Oncogene 10: 237–249.

    CAS  PubMed  Google Scholar 

  • Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24: 23–33.

    CAS  PubMed  Google Scholar 

  • Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4: 720–724.

    CAS  PubMed  Google Scholar 

  • Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL et al. (1993). Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 90: 1937–1941.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graveel C, Su Y, Koeman J, Wang LM, Tessarollo L, Fiscella M et al. (2004). Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci USA 101: 17198–17203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I . (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5: 461–466.

    CAS  PubMed  Google Scholar 

  • Hammond DE, Carter S, McCullough J, Urbe S, Vande Woude G, Clague MJ . (2003). Endosomal dynamics of Met determine signaling output. Mol Biol Cell 14: 1346–1354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst R, Munemitsu S, Ullrich A . (1995). Oncogenic activation of v-kit involves deletion of a putative tyrosine- substrate interaction site. Oncogene 10: 369–379.

    CAS  PubMed  Google Scholar 

  • Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A . (2006). Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21: 737–748.

    CAS  PubMed  Google Scholar 

  • Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS . (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 101: 4477–4482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T . (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20: 3695–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF . (1998). The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 95: 14417–14422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers M, Rong S, Vande Woude GF . (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 16: 1115–1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T et al. (1997a). Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94: 11445–11450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers M, Taylor GA, Weidner KM, Omura S, Vande Woude GF . (1997b). Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol 17: 799–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Huang F, Marusyk A, Sorkin A . (2003). Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 14: 858–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC . (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase [see comments]. Science 286: 309–312.

    CAS  PubMed  Google Scholar 

  • Kamei T, Matozaki T, Sakisaka T, Kodama A, Yokoyama S, Peng YF et al. (1999). Coendocytosis of cadherin and c-Met coupled to disruption of cell–cell adhesion in MDCK cells – regulation by Rho, Rac and Rab small G proteins. Oncogene 18: 6776–6784.

    CAS  PubMed  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD . (2001). Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106: 145–155.

    CAS  PubMed  Google Scholar 

  • Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J et al. (1999). cbl-3: a new mammalian cbl family protein. Oncogene 18: 3365–3375.

    CAS  PubMed  Google Scholar 

  • Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S et al. (2005). HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell 16: 550–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N et al. (2006). Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66: 283–289.

    CAS  PubMed  Google Scholar 

  • Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101: 4966–4971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamorte L, Park M . (2001). The receptor tyrosine kinases: role in cancer progression. Surg Oncol Clin N Am 10: 271–288, viii.

    CAS  PubMed  Google Scholar 

  • Lamorte L, Rodrigues S, Naujokas M, Park M . (2002a). Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program. J Biol Chem 277: 37904–37911.

    CAS  PubMed  Google Scholar 

  • Lamorte L, Royal I, Naujokas M, Park M . (2002b). Crk adapter proteins promote an epithelial-mesenchymal-like transition and are required for HGF-mediated cell spreading and breakdown of epithelial adherens junctions. Mol Biol Cell 13: 1449–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF et al. (2004). Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23: 5193–5202.

    CAS  PubMed  Google Scholar 

  • Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M et al. (2000). A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19: 4947–4953.

    CAS  PubMed  Google Scholar 

  • Liu Y, Rohrschneider LR . (2002). The gift of Gab. FEBS Lett 515: 1–7.

    CAS  PubMed  Google Scholar 

  • Lock LS, Frigault MM, Saucier C, Park M . (2003). Grb2-indpendent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain. J Biol Chem 278: 30083–30090.

    CAS  PubMed  Google Scholar 

  • Lock LS, Maroun CR, Naujokas MA, Park M . (2002). Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Mol Biol Cell 13: 2132–2146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lock LS, Royal I, Naujokas MA, Park M . (2000). Identification of an atypical grb2 carboxyl-terminal SH3 domain binding site in gab docking proteins reveals Grb2-dependent and -independent recruitment of gab1 to receptor tyrosine kinases [In Process Citation]. J Biol Chem 275: 31536–31545.

    CAS  PubMed  Google Scholar 

  • Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH . (2002). Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156: 843–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA et al. (2005). Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 65: 1479–1488.

    CAS  PubMed  Google Scholar 

  • Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD et al. (2003). c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63: 6272–6281.

    CAS  PubMed  Google Scholar 

  • Machide M, Hashigasako A, Matsumoto K, Nakamura T . (2006). Contact inhibition of hepatocyte growth regulated by functional association of the c-Met/hepatocyte growth factor receptor and LAR protein-tyrosine phosphatase. J Biol Chem 281: 8765–8772.

    CAS  PubMed  Google Scholar 

  • Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R . (1997). Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11: 3341–3350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini A, Koch A, Wilms R, Tamura T . (2002). c-Cbl associates directly with the C-terminal tail of the receptor for the macrophage colony-stimulating factor, c-Fms, and down-modulates this receptor but not the viral oncogene v-Fms. J Biol Chem 277: 14635–14640.

    CAS  PubMed  Google Scholar 

  • Marmor MD, Yarden Y . (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057–2070.

    CAS  PubMed  Google Scholar 

  • Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ et al. (1999). The Gab1 PH domain is required for localization of Gab1 at sites of cell–cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 19: 1784–1799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maroun CR, Naujokas MA, Park M . (2003). Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 14: 1691–1708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M . (2000). The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 20: 8513–8525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Nakamura T . (2001). Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 59: 2023–2038.

    CAS  PubMed  Google Scholar 

  • Michalopoulos GK, DeFrances MC . (1997). Liver regeneration. Science 276: 60–66.

    CAS  PubMed  Google Scholar 

  • Montesano R, Matsumodo K, Nakamura T, Orci L . (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901–908.

    CAS  PubMed  Google Scholar 

  • Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 278: 21323–21326.

    CAS  PubMed  Google Scholar 

  • Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H . (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106: 1511–1519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature 342: 440–443.

    CAS  PubMed  Google Scholar 

  • Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W . (2004). Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22: 405–414.

    CAS  PubMed  Google Scholar 

  • Nguyen L, Holgado-Madruga M, Maroun C, Fixman ED, Kamikura D, Fournier T et al. (1997). Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J Biol Chem 272: 20811–20819.

    CAS  PubMed  Google Scholar 

  • Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . (2002). CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16: 3074–3086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP et al. (1998). c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 58: 5157–5167.

    CAS  PubMed  Google Scholar 

  • Palka HL, Park M, Tonks NK . (2003). Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem 278: 5728–5735.

    CAS  PubMed  Google Scholar 

  • Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG et al. (1986). Mechanism of met oncogene activation. Cell 45: 895–904.

    CAS  PubMed  Google Scholar 

  • Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G . (1987). Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 84: 6379–6383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY et al. (2001). Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8: 995–1004.

    CAS  PubMed  Google Scholar 

  • Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M . (2004). A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 279: 29565–29571.

    CAS  PubMed  Google Scholar 

  • Peschard P, Park M . (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 3: 519–523.

    CAS  PubMed  Google Scholar 

  • Pollack AL, Runyan RB, Mostov KE . (1998). Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev Biol 204: 64–79.

    CAS  PubMed  Google Scholar 

  • Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77: 261–271.

    CAS  PubMed  Google Scholar 

  • Rahimi N, Hung W, Tremblay E, Saulnier R, Elliott B . (1998). c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem 273: 33714–33721.

    CAS  PubMed  Google Scholar 

  • Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H . (2002). Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4: 394–398.

    CAS  PubMed  Google Scholar 

  • Raiborg C, Rusten TE, Stenmark H . (2003). Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 15: 446–455.

    CAS  PubMed  Google Scholar 

  • Rodrigues GA, Park M . (1993). Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13: 6711–6722.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues GA, Park M . (1994). Oncogenic activation of tyrosine kinases. Curr Opin Genet Dev 4: 15–24.

    CAS  PubMed  Google Scholar 

  • Rodrigues SP, Fathers KE, Chan G, Zuo D, Halwani F, Meterissian S et al. (2005). CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol Cancer Res 3: 183–194.

    CAS  PubMed  Google Scholar 

  • Rong S, Segal S, Anver M, Resau JH, Vande Woude GF . (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 91: 4731–4735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronsin C, Muscatelli F, Mattei MG, Breathnach R . (1993). A novel putative receptor protein tyrosine kinase of the met family. Oncogene 8: 1195–1202.

    CAS  PubMed  Google Scholar 

  • Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M . (2000). Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 11: 1709–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J, Walther I et al. (2000). Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150: 1375–1384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan V, Paliouras GN, Cheng A, Dube N, Tremblay ML, Park M . (2006). Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. J Biol Chem 281: 221–228.

    CAS  PubMed  Google Scholar 

  • Saucier C, Khoury H, Lai KM, Peschard P, Dankort D, Naujokas MA et al. (2004). The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci USA 101: 2345–2350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M . (2002). Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 21: 1800–1811.

    CAS  PubMed  Google Scholar 

  • Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W . (2000). Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149: 1419–1432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699–702.

    CAS  PubMed  Google Scholar 

  • Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. (1997). Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16: 68–73.

    CAS  PubMed  Google Scholar 

  • Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I et al. (1998). Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58: 1719–1722.

    CAS  PubMed  Google Scholar 

  • Shen Y, Naujokas M, Park M, Ireton K . (2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103: 501–510.

    CAS  PubMed  Google Scholar 

  • Stoker M, Gherardi E, Gray J . (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327: 239–242.

    CAS  PubMed  Google Scholar 

  • Sun H, Shen Y, Dokainish H, Holgado-Madruga M, Wong A, Ireton K . (2005). Host adaptor proteins Gab1 and CrkII promote InlB-dependent entry of Listeria monocytogenes. Cell Microbiol 7: 443–457.

    CAS  PubMed  Google Scholar 

  • Thien CB, Langdon WY . (2001). Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2: 294–307.

    CAS  PubMed  Google Scholar 

  • Thiery JP . (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.

    CAS  PubMed  Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM . (2001). A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 107: 643–654.

    CAS  PubMed  Google Scholar 

  • Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373: 702–705.

    CAS  PubMed  Google Scholar 

  • Urbe S, Mills IG, Stenmark H, Kitamura N, Clague MJ . (2000). Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol Cell Biol 20: 7685–7692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM . (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153: 1023–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W . (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384: 173–176.

    CAS  PubMed  Google Scholar 

  • Weidner KM, Sachs M, Birchmeier W . (1993). The met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. Journal of Cell Biology 121: 145–154.

    CAS  Google Scholar 

  • Weidner KM, Sachs M, Riethmacher D, Birchmeier W . (1995). Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci USA 92: 2597–2601.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY et al. (2002). Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21: 4796–4808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WJ, Tu S, Cerione RA . (2003). Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114: 715–725.

    CAS  PubMed  Google Scholar 

  • Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T . (2003). Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene 22: 1546–1556.

    CAS  PubMed  Google Scholar 

  • Yang XM, Park M . (1995). Expression of the hepatocyte growth factor/scatter factor receptor tyrosine kinase is localized to epithelia in the adult mouse. Lab Invest 73: 483–491.

    CAS  PubMed  Google Scholar 

  • Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H et al. (1999). Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 274: 31707–31712.

    CAS  PubMed  Google Scholar 

  • Zarnegar R, Michalopoulos G . (1989). Purification and biological characterization of human hepatopoietin A, a polypetide growth factor for hepatocytes. Cancer Res 49: 3314–3320.

    CAS  PubMed  Google Scholar 

  • Zhang YW, Su Y, Volpert OV, Vande Woude GF . (2003). Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 100: 12718–12723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Naujokas MA, Park M . (1994b). Receptor chimeras indicate that the Met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth Differen 5: 359–366.

    CAS  Google Scholar 

  • Zhu H, Naujokas MA, Fixman ED, Torossian K, Park M . (1994a). Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem 269: 29943–29948.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschard, P., Park, M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26, 1276–1285 (2007). https://doi.org/10.1038/sj.onc.1210201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210201

Keywords

This article is cited by

Search

Quick links