Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma

Abstract

BIC is a primary microRNA (pri-miR-155) that can be processed to mature miR-155. In this study, we show the crucial involvement of protein kinase C (PKC) and nuclear factor-κB (NF-κB) in the regulation of BIC expression upon B-cell receptor triggering. Surprisingly, Northern blot analysis did not reveal any miR-155 expression upon induction of BIC expression in the Burkitt lymphoma-derived Ramos cell line, whereas other microRNAs were clearly detectable. Ectopic expression of BIC in Ramos and HEK293 cells resulted in miR-155 expression in HEK293, but not in Ramos cells, suggesting a specific block of BIC to miR-155 processing in Ramos. In line with the results obtained with Ramos, lack of miR-155 expression after induction of BIC expression was also observed in other Burkitt lymphoma cell lines, indicating a generic and specific blockade in the processing of BIC in Burkitt lymphoma. In contrast, induction of BIC expression in normal tonsillar B cells resulted in very high levels of miR-155 expression and induction of BIC expression in Hodgkin's lymphoma cell lines. It also resulted in elevated levels of miR-155. Our data provide evidence for two levels of regulation for mature miR-155 expression: one at the transcriptional level involving PKC and NF-κB, and one at the processing level. Burkitt lymphoma cells not only express low levels of BIC, but also prevent processing of BIC via an, as yet, unknown mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    Article  CAS  Google Scholar 

  • Chen CZ . (2005). MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353: 1768–1771.

    Article  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP . (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.

    Article  CAS  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  CAS  Google Scholar 

  • Clurman BE, Hayward WS . (1989). Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol Cell Biol 9: 2657–2664.

    Article  CAS  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.

    Article  CAS  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    Article  CAS  Google Scholar 

  • Haasch D, Chen YW, Reilly RM, Chiou XG, Koterski S, Smith ML et al. (2002). T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol 217: 78–86.

    Article  CAS  Google Scholar 

  • Hammond SM . (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16: 4–9.

    Article  CAS  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    Article  CAS  Google Scholar 

  • Hutvagner G, Zamore PD . (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060.

    Article  CAS  Google Scholar 

  • Jiang J, Lee EJ, Schmittgen TD . (2006). Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 45: 103–106.

    Article  CAS  Google Scholar 

  • Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ et al. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45: 147–153.

    Article  CAS  Google Scholar 

  • Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S et al. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207: 243–249.

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T . (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12: 735–739.

    Article  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  CAS  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ, Maas S . (2004). RNA editing of a miRNA precursor. RNA 10: 1174–1177.

    Article  CAS  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . (2004). Nuclear export of microRNA precursors. Science 303: 95–98.

    Article  CAS  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39: 167–169.

    Article  CAS  Google Scholar 

  • Obernosterer G, Leuschner PJF, Alenius M, Marinez J . (2006). Post-transcriptional regulation of microRNA expression. RNA 12: 1161–1167.

    Article  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al. (2004). Identification of virus-encoded microRNAs. Science 304: 734–736.

    Article  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226–230.

    Article  CAS  Google Scholar 

  • Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, Philip McCoy Jr J, Sloand EM et al. (2006). Hematopoietic-specific microRNA expression in human cells. Leuk Res 30: 643–647.

    Article  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439: 283–289.

    CAS  Google Scholar 

  • Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H . (2001). Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 158: 419–429.

    Article  CAS  Google Scholar 

  • Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270: 488–498.

    Article  CAS  Google Scholar 

  • Tam W, Hughes SH, Hayward WS, Besmer P . (2002). Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76: 4275–4286.

    Article  CAS  Google Scholar 

  • van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T et al. (2003). High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin's lymphoma. Genes Chromosomes Cancer 37: 20–28.

    Article  CAS  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al. (2006). Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13: 13–21.

    Article  CAS  Google Scholar 

  • Zeng Y, Cullen BR . (2005). Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280: 27595–27603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Dutch Cancer Society (RUG 01-2414)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-J Kroesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluiver, J., van den Berg, A., de Jong, D. et al. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 26, 3769–3776 (2007). https://doi.org/10.1038/sj.onc.1210147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210147

Keywords

This article is cited by

Search

Quick links