Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status

Abstract

The contribution of different proteolytic systems, in particular calpains and effector caspases, in apoptotic cell death is still controversial. In this paper, we show that during cisplatin-induced apoptosis of human metastatic melanoma cells, calpain activation, as measured in intact cells by two different fluorescent substrates, is an early event, taking place well before caspase-3/-7 activation, and progressively increasing during 48 h of treatment. Such activation appears to be independent from any intracellular calcium imbalance; in fact, an increase of cytosolic calcium along with emptying of the reticular stores occur only at very late stages, uniquely in frankly apoptotic, detached cells. Calpain activation proves to be an early and crucial event in the apoptotic machinery, as demonstrated by the significant protection of cell death in samples co-treated with the calpain inhibitors, MDL 28170, calpeptin and PD 150606, where a variable but significant reduction of both caspase-3/-7 activity and cell detachment is observed. Consistently, such a protective effect can be at least partially due to the impairment of cisplatin-induced p53 activation, occurring early in committed, preapoptotic cells. Furthermore, in late apoptotic cells, calpain activity is also responsible for the formation of a novel p53 proteolytic fragment (≈26 kDa), whose function is so far to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arora AS, deGroen PC, Croall DE, Emori Y, Gores GJ . (1996). Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. J Cell Physiol 167: 434–442.

    Article  CAS  Google Scholar 

  • Atencio IA, Ramachandra M, Shabram P, Demers GW . (2000). Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ 11: 247–253.

    CAS  PubMed  Google Scholar 

  • Biswas S, Chida AS, Rahman I . (2006). Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71: 551–564.

    Article  CAS  Google Scholar 

  • Chen L, Marechal V, Moreau J, Levine AJ, Chen J . (1997). Proteolytic cleavage of the mdm2 oncoprotein during apoptosis. J Biol Chem 272: 22966–22973.

    Article  CAS  Google Scholar 

  • Daniel KG, Anderson JS, Zhong Q, Kazi A, Gupta P, Dou QP . (2003). Association of mitochondrial calpain activation with increased expression and autolysis of calpain small subunit in an early stage of apoptosis. Int J Mol Med 12: 247–252.

    CAS  PubMed  Google Scholar 

  • Davies EV, Hallet MB . (1998). High micromolar Ca2+ beneath the plasma membrane in stimulated neutrophils. Biochem Biophys Res Commun 248: 679–683.

    Article  CAS  Google Scholar 

  • Del Bello B, Valentini MA, Mangiavacchi P, Comporti M, Maellaro E . (2004). Role of caspases-3 and -7 in Apaf-1 proteolytic cleavage and degradation events during cisplatin-induced apoptosis in melanoma cells. Exp Cell Res 293: 302–310.

    Article  CAS  Google Scholar 

  • Del Bello B, Valentini MA, Zunino F, Comporti M, Maellaro E . (2001). Cleavage of Bcl-2 in oxidant- and cisplatin-induced apoptosis of human melanoma cells. Oncogene 20: 4591–4595.

    Article  CAS  Google Scholar 

  • Gamberucci A, Innocenti B, Fulceri R, Banhegyi G, Giunti R, Pozzan T et al. (1994). Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem 269: 23597–23602.

    CAS  PubMed  Google Scholar 

  • Gao G, Dou QP . (2000). N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80: 53–72.

    Article  CAS  Google Scholar 

  • Gentiletti F, Mancini F, D'Angelo M, Sacchi A, Pontecorvi A, Jochemsen AG et al. (2002). MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts. Oncogene 21: 867–877.

    Article  CAS  Google Scholar 

  • Ghibelli L, Coppola S, Rotilio G, Lafavia E, Maresca V, Ciriolo MR . (1995). Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Commun 216: 313–320.

    Article  CAS  Google Scholar 

  • Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C et al. (1998). Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12: 479–486.

    Article  CAS  Google Scholar 

  • Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA et al. (2004). Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24: 2499–2512.

    Article  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J . (2002). The calpain system. Physiol Rev 83: 731–801.

    Article  Google Scholar 

  • Gonen H, Shkedy D, Barnoy S, Kosower NS, Ciechanover A . (1997). On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett 406: 17–22.

    Article  CAS  Google Scholar 

  • Gorka M, Godlewski MM, Gajkowska B, Wojewodzka U, Motyl T . (2004). Kinetics of Smac/DIABLO release from mitochondria during apoptosis of MCF-7 breast cancer cells. Cell Biol Int 28: 741–754.

    Article  CAS  Google Scholar 

  • Gottlieb TM, Oren M . (1996). p53 in growth control and neoplasia. Biochim Biophys Acta 1287: 77–102.

    Google Scholar 

  • Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR . (1999). Tumor necrosis factor-alpha-inducible IkappaB alpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin–proteasome pathway for nuclear factor-kappaB activation. J Biol Chem 274: 787–794.

    Article  CAS  Google Scholar 

  • Kitagaki H, Tomioka S, Yoshizawa T, Sorimachi H, Saido TC, Ishiura S et al. (2000). Autolysis of calpain large subunit inducing irreversible dissociation of stoichiometric heterodimer of calpain. Biosci Biotechnol Biochem 64: 689–695.

    Article  CAS  Google Scholar 

  • Knepper-Nicolai B, Savill J, Brown SB . (1998). Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 273: 30530–30536.

    Article  CAS  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    Article  CAS  Google Scholar 

  • Kobayashi S, Yamashita K, Takeoka T, Ohtsuki T, Suzuki Y, Takahashi R et al. (2002). Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J Biol Chem 277: 33968–33977.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Vousden KH . (1997). Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 17: 460–468.

    Article  CAS  Google Scholar 

  • Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai K et al. (2000). Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 275: 39702–39709.

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ . (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA et al. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158: 4612–4619.

    CAS  PubMed  Google Scholar 

  • Maellaro E, Dominici S, Del Bello B, Valentini MA, Pieri L, Perego P et al. (2000). Membrane gamma-glutamyl transpeptidase activity of melanoma cells: effects on cellular H(2)O(2) production, cell surface protein thiol oxidation and NF-kappa B activation status. J Cell Sci 113: 2671–2678.

    CAS  PubMed  Google Scholar 

  • Maellaro E, Pacenti L, Del Bello B, Valentini MA, Mangiavacchi P, De Felice C et al. (2003). Different effects of interferon-α on melanoma cell lines: a study on telomerase reverse transcriptase, telomerase activity and apoptosis. Br J Dermatol 148: 1115–1124.

    Article  CAS  Google Scholar 

  • Mandic A, Viktorsson K, Strandberg L, Thomas H, Hansson J, Linder S et al. (2002). Calpain-mediated bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22: 3003–3013.

    Article  CAS  Google Scholar 

  • Melloni E, Averna M, Salamino F, Sparatore B, Minafra R, Pontremoli S . (2000). Acyl-CoA-binding protein is a potent m-calpain activator. J Biol Chem 275: 82–86.

    Article  CAS  Google Scholar 

  • Melloni E, Michetti M, Salamino F, Pontremoli S . (1998). Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J Biol Chem 273: 12827–12831.

    Article  CAS  Google Scholar 

  • Molinari M, Carafoli E . (1997). Calpain: a cytosolic proteinase active at the membranes. J Membr Biol 156: 1–8.

    Article  CAS  Google Scholar 

  • Molinari M, Okorokov AL, Milner J . (1996). Interaction with damaged DNA induces selective proteolytic cleavage of p53 to yield 40 and 35 kDa fragments competent for sequence-specific DNA binding. Oncogene 13: 2077–2086.

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Yuan J . (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887–894.

    Article  CAS  Google Scholar 

  • Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H et al. (1996). Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319: 683–690.

    Article  CAS  Google Scholar 

  • Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R . (2003). Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278: 14162–14167.

    Article  CAS  Google Scholar 

  • Okorokov AL, Milner J . (1997). Proteolytic cleavage of p53: a model for the activation of p53 in response to DNA damage. Oncol Res 9: 267–273.

    CAS  PubMed  Google Scholar 

  • Pariat M, Carillo S, Molinari M, Salvat C, Debuscche LB, Milner J et al. (1997). Proteolysis by calpains: a possible contribution to degradation of p53. Mol Cell Biol 17: 2806–2815.

    Article  CAS  Google Scholar 

  • Polster BM, Extebarria A, Basanez G, Hardwick M, Nicholls D . (2005). Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280: 6447–6454.

    Article  CAS  Google Scholar 

  • Porn-Ares MI, Samali A, Orrenius S . (1998). Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5: 1028–1033.

    Article  CAS  Google Scholar 

  • Rosser BG, Power SP, Gores GJ . (1993). Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach. J Biol Chem 268: 23593–23600.

    CAS  PubMed  Google Scholar 

  • Salamino F, De Tullio R, Menbotti P, Viotti PL, Melloni E, Pontremoli S . (1993). Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochem J 290: 191–197.

    Article  CAS  Google Scholar 

  • Sato K, Kawashima S . (2001). Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743–751.

    Article  CAS  Google Scholar 

  • Schaecher K, Goust JM, Banik NL . (2004). The effects of calpain inhibition on IkB alpha degradation after activation of PBMCs: identification of the calpain cleavage sites. Neurochem Res 29: 1443–1451.

    Article  CAS  Google Scholar 

  • Sedarous M, Keramaris E, O'Hare M, Melloni E, Slack RS, Elce JS et al. (2003). Calpains mediate p53 activation and neuronal death evoked by DNA damage. J Biol Chem 278: 26031–26038.

    Article  CAS  Google Scholar 

  • Siddik ZH . (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265–7279.

    Article  CAS  Google Scholar 

  • Sorimachi H, Ishiura S, Suzuki K . (1997). Structure and physiological function of calpains. Biochem J 328: 721–732.

    Article  CAS  Google Scholar 

  • Suzuki K, Hata S, Kawabata Y, Sorimachi H . (2004). Structure, activation, and biology of calpain. Diabetes 53: S12–S16.

    Article  CAS  Google Scholar 

  • Trompier D, Chang XB, Barattin R, d'Hardemare AdM, Di Pietro A, Baubichon-Cortay H . (2004). Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Res 64: 4950–4956.

    Article  CAS  Google Scholar 

  • Van den Dobbelsteen DJ, Nobel CS, Schlegel J, Cotgreave IA, Orrenius S, Slater AF . (1996). Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 271: 15420–15427.

    Article  CAS  Google Scholar 

  • Volbracht C, Chua BT, Peng Ng C, Bahr BA, Hong W, Li P . (2005). The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem 93: 1280–1292.

    Article  CAS  Google Scholar 

  • Wang J, Friedman E . (2000). Downregulation of p53 by sustained JNK activation during apoptosis. Mol Carcinogen 29: 179–188.

    Article  CAS  Google Scholar 

  • Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA et al. (1998). Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356: 187–196.

    Article  CAS  Google Scholar 

  • Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES et al. (1998). Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5: 1051–1061.

    Article  CAS  Google Scholar 

  • Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC et al. (1998). Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17: 1069–1078.

    Article  CAS  Google Scholar 

  • Wu H, Lozano G . (1994). NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 269: 20067–20074.

    CAS  PubMed  Google Scholar 

  • Zhang W, Lane RD, Mykles DL . (1996). The major calpain isozymes are long-lived proteins. Design of an antisense strategy for calpain depletion in cultured cells. J Biol Chem 271: 18825–18830.

    Article  CAS  Google Scholar 

  • Zhu DM, Uckun FM . (2000). Calpain inhibitor II induces caspase-dependent apoptosis in human acute lymphoblastic leukemia and non-Hodgkin's lymphoma cells as well as some solid tumor cells. Clin Cancer Res 6: 2456–2463.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr R Giunti for technical assistance in calcium measurements. This work was supported by grants from University of Siena (Research Project to EM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Maellaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Bello, B., Moretti, D., Gamberucci, A. et al. Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 26, 2717–2726 (2007). https://doi.org/10.1038/sj.onc.1210079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210079

Keywords

This article is cited by

Search

Quick links