Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells

Abstract

Transforming growth factor beta 1 (TGF-β1) is a potent tumor suppressor but, paradoxically, TGF-β1 enhances tumor growth and metastasis in the late stages of cancer progression. This study investigated the role of TGF-β type I receptor, ALK5, and three mitogen-activated protein kinases (MAPKs) in metastasis by breast cancer cell line MDA-MB-231. We show that autocrine TGF-β signaling in MDA-MB-231 cells is required for tumor cell invasion and tumor angiogenesis. Expression of kinase-inactive ALK5 reduces tumor invasion and formation of new blood vessels within the tumor orthotopic xenografts in severe combined immunodeficiency (SCID) mice. In contrast, constitutively active ALK5-T204D enhances tumor invasion and angiogenesis by stimulating expression of matrix metalloproteinase MMP-9/gelatinase-B. Ablation of MMP-9 in ALK5-T204D cells by RNA interference (RNAi) reduces tumor invasion and tumor growth. Importantly, RNAi-MMP-9 reduces tumor neovasculature and increases tumor cell death. Induction of MMP-9 by TGF-β-ALK5 signaling requires MEK-ERK but not JNK, p38 MAPK or Smad4. Dominant-negative MEK blocks and constitutively active MEK1 enhances MMP-9 expression. However, all three MAPK cascades (ERK, JNK and p38 MAPK) are required for TGF-β-mediated cell migration. Collectively, our results show that TGF-β-ALK5-MAPK signaling in tumor cells promotes tumor angiogenesis and MMP-9 is an important component of this program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 6
Figure 3
Figure 5
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

MAPK:

mitogen-activated protein kinase

MMP-9:

matrix metalloproteinase-9

TGF-β:

transforming growth factor beta

References

  • Adachi-Yamada T, Nakamura M, Irie K, Tomoyasu Y, Sano Y, Mori E et al. (1999). p38 Mapk can be involved in TGF beta superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 19: 2322–2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L . (2003). ERKMAPK Activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer Res 63: 1684–1695.

    CAS  PubMed  Google Scholar 

  • Attisano L, Carcamo J, Ventura F, Weis FM, Massague J, Wrana JL . (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 75: 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL . (2002). p38 mitogen-activated protein kinase is required for TGF{beta}-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115: 3193–3206.

    CAS  PubMed  Google Scholar 

  • Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM . (2004). A critical role of tropomyosins in TGF-{beta} regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15: 4682–4694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL . (2000). Phosphatidylinositol 3-kinase function is required for TGFbeta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803–36810.

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Ewan KB . (2000). Transforming growth factor-beta and breast cancer: mammary gland development. Breast Cancer Res 2: 92–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benckert C, Jonas S, Cramer T, von Marschall Z, Schafer G, Peters M et al. (2003). Transforming growth factor {beta}1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 63: 1083–1092.

    CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolino P, Deckers M, Lebrin F, ten Dijke P . (2005). Transforming growth factor-{beta} signal transduction in angiogenesis and vascular disorders. Chest 128: 585S–5590.

    Article  CAS  PubMed  Google Scholar 

  • Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G et al. (1996). The p38/RK Mapk pathway regulates interleukin-6 synthesis response to tumor necrosis factor. Embo J 15: 1914–1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Toth K, Mazurchuk R, Spernyak JA, Slocum HK, Pendyala L et al. (2004). Lack of microvessels in well-differentiated regions of human head and neck squamous cell carcinoma A253 associated with functional magnetic resonance imaging detectable hypoxia, limited drug delivery, and resistance to irinotecan therapy 10.1158/1078-0432.CCR-04-1306. Clin Cancer Res 10: 8005–8017.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin AV, Aakre M, Lundquist CA, Engel M et al. (2001a). TGFb mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL . (2001b). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276: 46707–46713.

    Article  CAS  PubMed  Google Scholar 

  • Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR et al. (2004). Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64: 1675–1686.

    Article  CAS  PubMed  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17: 3091–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ . (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121: 1845–1854.

    CAS  PubMed  Google Scholar 

  • Dumont N, Arteaga CL . (2000). Transforming growth factor-beta and breast cancer: Tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2: 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont N, Arteaga CL . (2003). A kinase-inactive type II TGFbeta receptor impairs BMP signaling in human breast cancer cells. Biochem Biophys Res Commun 301: 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Dumont N, Bakin AV, Arteaga CL . (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 278: 3275–3285.

    Article  CAS  PubMed  Google Scholar 

  • Edlund S, Landstrom M, Heldin CH, Aspenstrom P . (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13: 902–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel ME, McDonnell MA, Law BK, Moses HL . (1999). Interdependent SMAD and JNK signaling in TGF-beta-mediated transcription. J Biol Chem 274: 37413–37420.

    Article  CAS  PubMed  Google Scholar 

  • Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M . (1998). Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem Biol 5: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Farina AR, Coppa A, Tiberio A, Tacconelli A, Turco A, Colletta G et al. (1998). Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity. Int J Cancer 75: 721–730.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  • Frey RS, Mulder KM . (1997). Involvement of ERK 2 and stress-activated protein kinase/JNK activation by TGF-beta in the negative growth control of breast cancer cells. Cancer Res 57: 628–633.

    CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hartsough MT, Mulder KM . (1995). Transforming growth factor beta activation of p44[IMAGE] in proliferating cultures of epithelial cells. J Biol Chem 270: 7117–7124.

    Article  CAS  PubMed  Google Scholar 

  • Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA et al. (1999). A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274: 24211–24219.

    Article  CAS  PubMed  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). MAP kinases and cell migration. J Cell Sci 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, New L, Pan Z, Han J, Nemerow GR . (2000). Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38α mitogen-activated protein kinase activity. J Biol Chem 275: 12266–12272.

    Article  CAS  PubMed  Google Scholar 

  • Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J . (1998). SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143: 1361–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK . (2003). Molecular regulation of vessel maturation. Nat Med 9: 685–693.

    Article  CAS  PubMed  Google Scholar 

  • Janji B, Melchior C, Gouon V, Vallar L, Kieffer N . (1999). Autocrine TGF-beta-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. Int J Cancer 83: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H et al. (2005). The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65: 3200–3208.

    Article  CAS  PubMed  Google Scholar 

  • Johansson N, Ala-aho R, Uitto V, Grenman R, Fusenig NE, Lopez-Otin C et al. (2000). Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113: 227–235.

    CAS  PubMed  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P et al. (2001). Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20: 1663–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W . (1994). Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174: 5–19.

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Pollard JW . (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66: 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Linder S, Aepfelbacher M . (2003). Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13: 376–385.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (1998). TGF-beta signal transduction. Annu Rev Biochem 67: 753–791.

    Article  CAS  PubMed  Google Scholar 

  • Mucsi I, Skorecki KL, Goldberg HJ . (1996). ERK and the small GTP-binding protein, Rac, contribute to the effects of TGF-beta1 on gene expression. J Biol Chem 271: 16567–16572.

    Article  CAS  PubMed  Google Scholar 

  • Oshima M, Oshima H, Taketo MM . (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179: 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak G, Helfman DM . (2002). Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol Biol Cell 13: 336–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price JE, Polyzos A, Zhang RD, Daniels LM . (1990). Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50: 717–721.

    CAS  PubMed  Google Scholar 

  • Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ . (1996). MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16: 1247–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor {beta} in carcinogenesis. Proc Natl Acad Sci 100: 8621–8623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahai E, Olson MF, Marshall CJ . (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20: 755–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seals DF, Azucena J, Eduardo F, Pass I, Tesfay L, Gordon R et al. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7: 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N et al. (1996). TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  • Siegel PM, Massague J . (2003). Cytostatic and apoptotic actions of tgf-[beta] in homeostasis and cancer. Nat Rev Cancer 3: 807–820.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Cuervo C, Merrell MA, Watson L, Harris KW, Rosenthal EL, Vaananen HK et al. (2004). Breast cancer cells with inhibition of p38α have decreased MMP-9 activity and exhibit decreased bone metastasis in mice. Clin Exp Metastasis 21: 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Tarin D, Price JE . (1981). Influence of microenvironment and vascular anatomy on ‘metastatic’ colonization potential of mammary tumors. Cancer Res 41: 3604–3609.

    CAS  PubMed  Google Scholar 

  • Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. (1996). MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 15: 7026–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Steen P, Dubois B, Nelissen I, Rudd P, Dwek R, Opdenakker G . (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37: 375–536.

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Semple J, Welch W, Folkman J . (1991). Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Welch DR, Steeg PS, Rinker-Schaeffer CW . (2000). Molecular biology of breast metastasis: genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2: 408–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wexler H . (1966). Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst 36: 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Hebert MC, Zhang YE . (2002). TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21: 3749–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Ran S, Sambade M, Huang X, Thorpe PE . (2002). A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis 5: 35–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J-M Gauthier, J Massague, A Bhattacharya, and J Bromberg for providing reagents; Heinz Baumann, Ivan Still, and Elizabeth Repasky for critical reading of the paper; Mary M Vaughan and Karoly Toth for assistance with the immunohistochemistry and histopathology; Patricia Masso-Welch and Ming-Qiang Ren for help in some animal experiments. This work was supported by PHS Grant R01 CA95263 and USAMRMC Grant DAMD17-02-01-0602 (to AVB) and in part by the Roswell Park Cancer Institute Cancer Center Support Grant CA 16056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Bakin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safina, A., Vandette, E. & Bakin, A. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 26, 2407–2422 (2007). https://doi.org/10.1038/sj.onc.1210046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210046

Keywords

This article is cited by

Search

Quick links