Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death

Abstract

The proapoptotic B-cell lymphoma-2 family protein Bax is a key regulatory point in the intrinsic apoptotic pathway. However, the factors controlling the process of Bax activation and translocation to mitochondria have yet to be fully identified and characterized. We performed affinity chromatography using peptides corresponding to the mitochondrial-targeting region of Bax, which is normally sequestered within the inactive structure. The molecular chaperone nucleophosmin was identified as a novel Bax-binding protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Reciprocal co-immunoprecipitation and proximity assays confirmed the Bax-nucleophosmin protein–protein interaction and verified that nucleophosmin only bound to activated conformationally altered Bax. Confocal microscopy in a cell-based apoptosis model, demonstrated that nucleophosmin translocation from nucleolus to cytosol preceded Bax movement. Specific knockdown of nucleophosmin expression using RNAi attenuated apoptosis as measured by mitochondrial cytochrome c release and activation of the caspase cascade. In a mouse model of ischaemic stroke, subcellular fractionation studies verified that nucleophosmin translocation occurred within 3 h, at a time before Bax translocation but after Bax conformational changes have occurred. Thus, we have elucidated a novel molecular mechanism whereby Bax becomes activated and translocates to the mitochondria to orchestrate mitochondrial dysfunction and apoptotic cell death, which opens new avenues for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA et al. (2005). Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18: 435–445.

    Article  CAS  Google Scholar 

  • Akhtar RS, Ness JM, Roth KA . (2004). Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 1644: 189–203.

    Article  CAS  Google Scholar 

  • Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP et al. (2005). The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell 18: 637–650.

    Article  CAS  Google Scholar 

  • Birse-Archbold JL, Kerr LE, Jones PA, McCulloch J, Sharkey J . (2005). Differential profile of Nix upregulation and translocation during hypoxia/ischaemia in vivo versus in vitro. J Cereb Blood Flow Metab 25: 1356–1365.

    Article  CAS  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA . (1989). Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379–390.

    Article  CAS  Google Scholar 

  • Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C et al. (2001). Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21: 321–333.

    Article  CAS  Google Scholar 

  • Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM . (2003). The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 278: 11633–11641.

    Article  CAS  Google Scholar 

  • Chan PK, Bloom DA, Hoang TT . (1999). The N-terminal half of NPM dissociates from nucleoli of HeLa cells after anticancer drug treatments. Biochem Biophys Res Commun 264: 305–309.

    Article  CAS  Google Scholar 

  • Chiesa R, Piccardo P, Dossena S, Nowoslawski L, Roth KA, Ghetti B et al. (2005). Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc Natl Acad Sci USA 102: 238–243.

    Article  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4: 529–533.

    Article  CAS  Google Scholar 

  • Cuddeback SM, Yamaguchi H, Komatsu K, Miyashita T, Yamada M, Wu C et al. (2001). Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J Biol Chem 276: 20559–20565.

    Article  CAS  Google Scholar 

  • Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F et al. (2005). Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25: 694–712.

    Article  CAS  Google Scholar 

  • Gleave M, Jansen B . (2003). Clusterin and IGFBPs as antisense targets in prostate cancer. Ann NY Acad Sci 1002: 95–104.

    Article  CAS  Google Scholar 

  • Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC et al. (2003). Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423: 456–461.

    Article  CAS  Google Scholar 

  • Gupta S, Knowlton AA . (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106: 2727–2733.

    Article  CAS  Google Scholar 

  • Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA . (2004). Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279: 21233–21238.

    Article  CAS  Google Scholar 

  • Hingorani K, Szebeni A, Olson MO . (2000). Mapping the functional domains of nucleolar protein B23. J Biol Chem 275: 24451–24457.

    Article  CAS  Google Scholar 

  • Hsu YT, Youle RJ . (1997). Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272: 13829–13834.

    Article  CAS  Google Scholar 

  • Kerr LE, Birse-Archbold JL, Simon A, Logan N, Scott F, Carlson G et al. (2004a). Differential regulation of caspase-3 by pharmacological and developmental stimuli as demonstrated using humanised caspase-3 mice. Apoptosis 9: 739–747.

    Article  CAS  Google Scholar 

  • Kerr LE, McGregor AL, Amet LE, Asada T, Spratt C, Allsopp TE et al. (2004b). Mice overexpressing human caspase 3 appear phenotypically normal but exhibit increased apoptosis and larger lesion volumes in response to transient focal cerebral ischaemia. Cell Death Differ 11: 1102–1111.

    Article  CAS  Google Scholar 

  • Kirchhoff SR, Gupta S, Knowlton AA . (2002). Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105: 2899–2904.

    Article  CAS  Google Scholar 

  • Krummel KA, Lee CJ, Toledo F, Wahl GM . (2005). The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102: 10188–10193.

    Article  CAS  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465–475.

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Sejas DP, Bagby GC, Pang Q . (2004). Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 279: 41275–41279.

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Sejas DP, Pang Q . (2005). Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leukemia Res 29: 1415–1423.

    Article  CAS  Google Scholar 

  • Li YP . (1997). Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71: 4098–4102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YY, Lam CY, Yung BY . (1996). Decreased accumulation and dephosphorylation of the mitosis-specific form of nucleophosmin/B23 in staurosporine-induced chromosome decondensation. Biochem J 317: 321–327.

    Article  CAS  Google Scholar 

  • Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F . (2004). Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24: 3703–3711.

    Article  CAS  Google Scholar 

  • Mar Martinez-Senac M, Corbalan-Garcia S, Gomez-Fernandez JC . (2001). Conformation of the C-terminal domain of the pro-apoptotic protein Bax and mutants and its interaction with membranes. Biochemistry 40: 9983–9992.

    Article  Google Scholar 

  • Matsushita K, Matsuyama T, Kitagawa K, Matsumoto M, Yanagihara T, Sugita M . (1998). Alterations of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centres following focal cerebral ischemia in mice. Neuroscience 83: 439–448.

    Article  CAS  Google Scholar 

  • Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y et al. (2004). Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15: 901–912.

    Article  CAS  Google Scholar 

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H et al. (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95: 14681–14686.

    Article  CAS  Google Scholar 

  • Nechushtan A, Smith CL, Hsu YT, Youle RJ . (1999). Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18: 2330–2341.

    Article  CAS  Google Scholar 

  • Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H et al. (2003). 14-3-3 interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278: 2058–2065.

    Article  CAS  Google Scholar 

  • Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J, Nakayama KI et al. (2004). ASC is a Bax adaptor and regulates the p53–Bax mitochondrial apoptosis pathway. Nat Cell Biol 6: 121–128.

    Article  CAS  Google Scholar 

  • Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S . (2003). Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5: 320–329.

    Article  CAS  Google Scholar 

  • Schinzel A, Kaufmann T, Schuler M, Martinalbo J, Grubb D, Borner C . (2004). Conformational control of Bax localization and apoptotic activity by Pro168. J Cell Biol 164: 1021–1032.

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M . (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.

    Article  CAS  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N . (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103: 645–654.

    Article  CAS  Google Scholar 

  • Takahashi Y, Karbowski M, Yamaguchi H, Kazi A, Wu J, Sebti SM et al. (2005). Loss of bif-1 suppresses bax/bak conformational change and mitochondrial apoptosis. Mol Cell Biol 25: 9369–9382.

    Article  CAS  Google Scholar 

  • Takemura M, Ohoka F, Perpelescu M, Ogawa M, Matsushita H, Takaba T et al. (2002). Phosphorylation-dependent migration of retinoblastoma protein into the nucleolus triggered by binding to nucleophosmin/B23. Exp Cell Res 276: 233–241.

    Article  CAS  Google Scholar 

  • Tan Y, Wu C, De Veyra T, Greer PA . (2006). Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J Biol Chem 281: 17689–17698.

    Article  CAS  Google Scholar 

  • Tremblais K, Oliver L, Juin P, Le Cabellec TM, Meflah K, Vallette FM . (1999). The C-terminus of bax is not a membrane addressing/anchoring signal. Biochem Biophys Res Commun 260: 582–591.

    Article  CAS  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD . (1998). Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18: 1428–1439.

    Article  CAS  Google Scholar 

  • Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ . (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281–1292.

    Article  CAS  Google Scholar 

  • Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY . (2005). Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7: 909–915.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a research grant from Astellas Pharma Inc., Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L E Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, L., Birse-Archbold, JL., Short, D. et al. Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death. Oncogene 26, 2554–2562 (2007). https://doi.org/10.1038/sj.onc.1210044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210044

Keywords

This article is cited by

Search

Quick links