Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity

Abstract

p21-activated kinase 1 (PAK1) is a mediator of downstream signaling from the small GTPases Rac and Cdc42. In its inactive state, PAK1 forms a homodimer where two kinases inhibit each other in trans. The kinase inhibitory domain (KID) of one molecule of PAK1 binds to the kinase domain of its counterpart and keeps it inactive. Therefore, the isolated KID of PAK1 has been widely used to specifically inhibit and study PAK function. Here, we show that the isolated KID induced a cell cycle arrest with accumulation of cells in the G1 phase of the cell cycle with an inhibition of cyclin D1 and D2 expression. This cell cycle arrest required the intact KID and was also induced by a mutated KID unable to block PAK1 kinase activity. Furthermore, the KID-induced cell cycle arrest could not be rescued by the expression of a constitutively active PAK1-T423E mutant, concluding that this arrest occurs independently of PAK1 kinase activity. Our results suggest that PAK1 through its KID inhibits cyclin D expression and thereby enforces a cell cycle arrest. Our results also call for serious precaution in the use of KID to study PAK function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R . (2000). Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275: 12041–12050.

    Article  CAS  Google Scholar 

  • Bakhiet M, Tjernlund A, Mousa A, Gad A, Stromblad S, Kuziel WA et al. (2001). RANTES promotes growth and survival of human first-trimester forebrain astrocytes. Nat Cell Biol 3: 150–157.

    Article  CAS  Google Scholar 

  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK et al. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279: 1422–1428.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J, Bartkova J . (1999). Perspective: defects in cell cycle control and cancer. J Pathol 187: 95–99.

    Article  CAS  Google Scholar 

  • Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D et al. (1997). Detailed map of a region commonly amplified at 11q13 – >q14 in human breast carcinoma. Cytogenet Cell Genet 79: 125–131.

    Article  CAS  Google Scholar 

  • Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG . (1996). Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 271: 25746–25749.

    Article  CAS  Google Scholar 

  • Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J . (1996). Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 6: 598–605.

    Article  CAS  Google Scholar 

  • Chi S, Chang S, Park D . (2004). Pak regulates calpain-dependent degradation of E3b1. Biochem Biophys Res Commun 319: 683–689.

    Article  CAS  Google Scholar 

  • Chong C, Tan L, Lim L, Manser E . (2001). The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 276: 17347–17353.

    Article  CAS  Google Scholar 

  • Cvrckova F, De Virgilio C, Manser E, Pringle JR, Nasmyth K . (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9: 1817–1830.

    Article  CAS  Google Scholar 

  • Dadke D, Fryer BH, Golemis EA, Field J . (2003). Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi's sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res 63: 8837–8847.

    CAS  PubMed  Google Scholar 

  • DerMardirossian C, Schnelzer A, Bokoch GM . (2004). Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac. GTPase Mol Cell 15: 117–127.

    Article  CAS  Google Scholar 

  • Galisteo ML, Chernoff J, Su YC, Skolnik EY, Schlessinger J . (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase. Pakl J Biol Chem 271: 20997–21000.

    Article  CAS  Google Scholar 

  • Holly SP, Blumer KJ . (1999). PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae. J Cell Biol 147: 845–856.

    Article  CAS  Google Scholar 

  • Jaffer ZM, Chernoff J . (2002). p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34: 713–717.

    Article  CAS  Google Scholar 

  • Lee SH, Eom M, Lee SJ, Kim S, Park HJ, Park D . (2001). BetaPix-enhanced p38 activation by Cdc42/Rac/PAK/MKK3/6-mediated pathway. Implication in the regulation of membrane ruffling. J Biol Chem 276: 25066–25072.

    Article  CAS  Google Scholar 

  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ et al. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102: 387–397.

    Article  CAS  Google Scholar 

  • Leisner TM, Liu M, Jaffer ZM, Chernoff J, Parise LV . (2005). Essential role of CIB1 in regulating PAK1 activation and cell migration. J Cell Biol 170: 465–476.

    Article  CAS  Google Scholar 

  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J et al. (2002). p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3: 767–773.

    Article  CAS  Google Scholar 

  • Li W, Chong H, Guan KL . (2001). Function of the Rho family GTPases in Ras-stimulated Raf activation. J Biol Chem 276: 34728–34737.

    Article  CAS  Google Scholar 

  • Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114: 215–227.

    Article  CAS  Google Scholar 

  • Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T et al. (1997). Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17: 1129–1143.

    Article  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L . (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46.

    Article  CAS  Google Scholar 

  • Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L et al. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1: 183–192.

    Article  CAS  Google Scholar 

  • Nheu T, He H, Hirokawa Y, Walker F, Wood J, Maruta H . (2004). PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S transition. Cell Cycle 3: 71–74.

    Article  CAS  Google Scholar 

  • Parrini MC, Lei M, Harrison SC, Mayer BJ . (2002). Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9: 73–83.

    Article  CAS  Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed SI . (1994). Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679.

    Article  CAS  Google Scholar 

  • Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T et al (2003). Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163: 985–992.

    Article  CAS  Google Scholar 

  • Sells MA, Boyd JT, Chernoff J . (1999). p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145: 837–849.

    Article  CAS  Google Scholar 

  • Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J . (1997). Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7: 202–210.

    Article  CAS  Google Scholar 

  • Shockett P, Difilippantonio M, Hellman N, Schatz DG . (1995). A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci USA 92: 6522–6526.

    Article  CAS  Google Scholar 

  • Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM . (2005). Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem 280: 2055–2064.

    Article  CAS  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J et al. (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17: 4454–4464.

    Article  CAS  Google Scholar 

  • Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff J . (2002). Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr Biol 12: 1227–1232.

    Article  CAS  Google Scholar 

  • Thullberg M, Bartek J, Lukas J . (2000). Ubiquitin/proteasome-mediated degradation of p19INK4d determines its periodic expression during the cell cycle. Oncogene 19: 2870–2876.

    Article  CAS  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238–36244.

    Article  CAS  Google Scholar 

  • Weiss EL, Bishop AC, Shokat KM, Drubin DG . (2000). Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nat Cell Biol 2: 677–685.

    Article  CAS  Google Scholar 

  • Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK . (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 3: 950–957.

    Article  CAS  Google Scholar 

  • Zenke FT, King CC, Bohl BP, Bokoch GM . (1999). Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem 274: 32565–32573.

    Article  CAS  Google Scholar 

  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E . (2005). The GIT-Associated Kinase PAK Targets to the Centrosome and Regulates Aurora-A. Mol Cell 20: 237–249.

    Article  CAS  Google Scholar 

  • Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L . (1998). A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18: 2153–2163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Edward Manser for kindly providing the pXJGST-KID and pXJGSTKID-L107F constructs and the Developmental Studies Hybridoma Bank, University of Iowa for providing anti-BrdU mab G3G4 and anti-myc mab 9E10. This work was supported by grants to SS from the Swedish Cancer Society and the Swedish Research Council and to MT from The Swedish Society of Medicine. SS holds a senior scientist position from the Swedish Research Council and MT was supported from The Swedish Cancer Society and The Swedish Society of Medicine. AB and JC were supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Thullberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thullberg, M., Gad, A., Beeser, A. et al. The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity. Oncogene 26, 1820–1828 (2007). https://doi.org/10.1038/sj.onc.1209983

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209983

Keywords

This article is cited by

Search

Quick links