Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of SV40 large T-antigen stability by reversible acetylation

A Corrigendum to this article was published on 17 July 2014

Abstract

Reversible acetylation on protein lysine residues has been shown to regulate the function of both nuclear proteins such as histones and p53 and cytoplasmic proteins such as α-tubulin. To identify novel acetylated proteins, we purified several proteins by the affinity to an anti-acetylated-lysine antibody from cells treated with trichostatin A (TSA). Among the proteins identified, here we report acetylation of the SV40 large T antigen (T-Ag). The acetylation site was determined to be lysine-697, which is located adjacent to the C-terminal Cdc4 phospho-degron (CPD). Overexpression of the CBP acetyltransferase acetylated T-Ag, whereas HDAC1, HDAC3 and SIRT1 bound and deacetylated T-Ag. The acetylation and deacetylation occurred independently of p53, a binding partner of T-Ag, but the acetylation was enhanced in the presence of p53. T-Ag in the cells treated with TSA and NA or the acetylation mimic mutant (K697Q) became unstable in COS-7 cells, suggesting that acetylation regulates stability of T-Ag. Indeed, NIH3T3 cells stably expressing K697Q showed decreased anchorage-independent growth compared with those expressing wild type or the K697R mutant. These results demonstrate that acetylation destabilizes T-Ag and regulates the transforming activity of T-Ag in NIH3T3 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS . (1996). EMBO J 15: 2236–2248.

  • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA . (2002). J Biol Chem 277: 45099–45107.

  • Brown M, McCormack M, Zinn KG, Farrell MP, Bikel I, Livingston DM . (1986). J Virol 60: 290–293.

  • Caron C, Boyault C, Khochbin S . (2005). Bioessays 27: 408–415.

  • Caron C, Col E, Khochbin S . (2003). Bioessays 25: 58–65.

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB . (2001). Nat Cell Biol 3: 667–674.

  • Chen L, Fischle W, Verdin E, Greene WC . (2001). Science 293: 1653–1657.

  • Eckner R, Ludlow JW, Lill NL, Oldread E, Arany Z, Modjtahedi N et al. (1996). Mol Cell Biol 16: 3454–3464.

  • Fukazawa H, Mizuno S, Uehara Y . (1995). Anal Biochem 228: 83–90.

  • Fukazawa H, Noguchi K, Masumi A, Murakami Y, Uehara Y . (2004). Mol Cancer Ther 3: 1281–1288.

  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S . (2001). Proc Natl Acad Sci USA 98: 87–92.

  • Giandomenico V, Simonsson M, Gronroos E, Ericsson J . (2003). Mol Cell Biol 23: 2587–2599.

  • Gu W, Roeder RG . (1997). Cell 90: 595–606.

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. (2002). Nature 417: 455–458.

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L . (2000). Nature 403: 795–800.

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. (2002). EMBO J 21: 6236–6245.

  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH et al. (2002). Cell 111: 709–720.

  • Komatsu Y, Yukutake Y, Yoshida M . (2003). J Immunol Methods 272: 161–175.

  • Kouzarides T . (2000). EMBO J 19: 1176–1179.

  • Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. (2006). Oncogene (in press).

  • Lill NL, Tevethia MJ, Eckner R, Livingston DM, Modjtahedi N . (1997). J Virol 71: 129–137.

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). Mol Cell Biol 19: 1202–1209.

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Cell 107: 137–148.

  • Luo J, Su F, Chen D, Shiloh A, Gu W . (2000). Nature 408: 377–381.

  • Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al. (2002). EMBO J 21: 6820–6831.

  • Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D'Amico D, Bodner S et al. (1992). Oncogene 7: 171–180.

  • Muth V, Nadaud S, Grummt I, Voit R . (2001). EMBO J 20: 1353–1362.

  • Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD et al. (2001). Nature 414: 514–521.

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . (2003). Mol Cell 11: 437–444.

  • Polesskaya A, Duquet A, Naguibneva I, Weise C, Vervisch A, Bengal E et al. (2000). J Biol Chem 275: 34359–34364.

  • Poulin DL, Kung AL, DeCaprio JA . (2004). J Virol 78: 8245–8253.

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). Genes Develop 12: 2831–2841.

  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y et al. (1999). Mol Cell 4: 725–734.

  • Spence SL, Pipas JM . (1994). J Virol 68: 4227–4240.

  • Stacy T, Chamberlain M, Cole CN . (1989). J Virol 63: 5208–5215.

  • Sullivan CS, Pipas JM . (2002). Microbiol Mol Biol Rev 66: 179–202.

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. (2001). Cell 107: 149–159.

  • Welcker M, Clurman BE . (2005). J Biol Chem 280: 7654–7658.

  • Xie AY, Bermudez VP, Folk WR . (2002). Mol Cell Biol 22: 7907–7918.

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. (2004). EMBO J 23: 2116–2125.

  • Yoshida M, Kijima M, Akita M, Beppu T . (1990). J Biol Chem 265: 17174–17179.

Download references

Acknowledgements

We thank Tso-Pang Yao for providing the CBP, SIRT1-5 and p53, Xiang-Jiao Yang for the PCAF, Saadi Khochbin for the HA-TIP60. We are grateful for the support of RIKEN BSI's Research Resources Center for the LC-MS/MS analysis. This work was supported in part by the Program for the Promotion of Fundamental studies in Health Science of the National Institute of Biomedical Innovation (NIBIO), and a Grant-in-Aid for Scientific Research on Priority Area ‘Cancer’ from The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimazu, T., Komatsu, Y., Nakayama, K. et al. Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25, 7391–7400 (2006). https://doi.org/10.1038/sj.onc.1209731

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209731

Keywords

This article is cited by

Search

Quick links