Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of secondary structure in the 5′-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation

Abstract

Adrenomedullin (AM) is a multifunctional regulatory peptide with important angiogenic and mitogenic properties. Here we identify a region of stable secondary structure in the 5′-untranslated region (5′ UTR) of human AM mRNA. Reverse transcriptase–polymerase chain reaction of the 5′ UTR consistently resulted, in addition to the product with the expected size of 155 base pair (bp), in a second product with an 65-bp deletion from the central region of the 5′ UTR, suggesting the presence of a secondary structure. The presence of a stem–loop structure was confirmed by probing the 5′ UTR with RNases with selectivity for single- or double-stranded RNA. We investigated the role of this stem–loop structure in expression of luciferase reporter gene in cultured cell lines. Reporter assays using a chimeric mRNA that combined luciferase and the 5′ UTR of AM mRNA demonstrated a dramatic decrease of the reporter activity owing to a decreased translation, whereas the deletion of the stem–loop structure localized between nt +31 and +95 from the cap site led to the recovery of activity. Gel migration shift assays using cytosolic extracts from mammalian cell lines demonstrate a specific binding of a cytosolic protein to riboprobes containing the 5′ UTR of AM but not to riboprobes either corresponding to other areas of the message or containing the 5′ UTR but lacking the region of secondary structure. Although we conclude that the 5′ UTR of the human AM mRNA can modulate the translation of AM mRNA in vivo, and that the predicted stem–loop structure is necessary for this inhibition, the functional consequences of the cis element-binding activity remain to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R . (2002). Cell 108: 221–232.

  • Bernstein J, Sella O, Le SY, Elroy-Stein O . (1997). J Biol Chem 272: 9356–9362.

  • Brenet F, Dussault N, Borch J, Ferracci G, Delfino C, Roepstorff P et al. (2005). Mol Cell Biol 25: 7505–7521.

  • Caron KM, Smithies O . (2001). Proc Natl Acad Sci USA 98: 615–619.

  • Canceill D, Ehrlich SD . (1996). Proc Natl Acad Sci USA 93: 6647–6652.

  • Cariello NF, Thilly WG, Swenberg J A, Skopek TR . (1991). Gene (Amsterdam) 99: 105–108.

  • Chomczynski P, Sacchi N . (1987). Anal Biochem 162: 156–159.

  • Creancier L, Morello D, Mercier P, Prats AC . (2000). J Cell Biol 150: 275–281.

  • El Meskini R, Boudouresque F, Ouafik L . (1997). Endocrinology 138: 5256–5265.

  • Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, Eberhart D et al. (1995). Science 268: 731–734.

  • Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM et al. (2004). Int J Cancer 108: 797–804.

  • Fraboulet S, Boudouresque F, Delfino C, Ouafik L . (1998). Endocrinology 139: 894–904.

  • Galy B, Creancier L, Zanibellato C, Prats AC, Prats H . (2001). Oncogene 20: 1669–1677.

  • Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L et al. (2000). Mol Endocrinol 14: 848–862.

  • Glickman BW, Ripley LS . (1984). Proc Natl Acad Sci USA 81: 512–516.

  • Hata K, Takebayashi Y, Akiba S, Fujiwaki R, Iida K, Nakayama K et al. (2000). Mol Hum Reprod 6: 867–872.

  • Hinson JP, Kapas S, Smith DM . (2000). Endocr Rev 21: 138–167.

  • Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G et al. (2001). Mol Cell Biol 21: 3888–3900.

  • Ishikawa T, Chen J, Wang J, Okada F, Sugiyama T, Kobayashi T et al. (2003). Oncogene 22: 1238–1242.

  • Ishimitsu T, Kojima M, Kangawa K, Hino J, Matsuoka H, Kitamura K et al. (1994). Cell Mol Biol Res 203: 631–639.

  • Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H et al. (1993). Biochem Biophys Res Commun 194: 720–725.

  • Kozak M . (1986). Proc Natl Acad Sci USA 83: 2850–2854.

  • Kozak M . (1987). Nucleic Acids Res 15: 8125–8148.

  • Kozak M . (1989). J Cell Biol 108: 229–241.

  • Kozak M . (1991). J Cell Biol 115: 887–903.

  • Kozak M . (1996). Mamm Genome 7: 563–574.

  • Laemmli UK . (1970). Nature 227: 680–685.

  • Leibold EA, Munro HN . (1988). Proc Natl Acad Sci USA 85: 2171–2175.

  • Laing LG, Gluick TC, Drapper DE . (1994). J Mol Biol 237: 577–587.

  • Letizia C, Cerci S, Centanni M, De Toma G, Subioli S, Scuro L et al. (1998). Clin Endocrinol (Oxford) 48: 145–148.

  • Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Elsasser T et al. (1996). J Biol Chem 271: 23345–23351.

  • Morrisey K, Evans RA, Wakefield L, Phillips AO . (2001). Am J Pathol 159: 1905–1915.

  • Murakami Y, Hattori Y, Taniyama M, Kitamura K, Kasai K . (1998). Life Sci 63: PL337–PL342.

  • Odelberg SJ, Weiss RB, Hata A, White R . (1995). Nucleic Acids Res 23: 2049–2057.

  • Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M, Hentze MW . (1997). Cell 89: 597–606.

  • Ouafik L, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F et al. (2002). Am J Pathol 160: 1279–1292.

  • Paraskeva E, Gray NK, Schlager B, Wehr K, Hentze MW . (1999). Mol Cell Biol 19: 807–816.

  • Pelletier J, Sonenberg N . (1987). Biochem Cell Biol 65: 576–581.

  • Pewitt EB, Haleem R, Wang Z . (1999). Endocrinology 140: 2382–2386.

  • Ranganathan G, Li C, Kern PA . (2000). J Biol Chem 275: 40986–40991.

  • Rocchi P, Boudouresque F, Zamora AJ, Muracciole X, Lechevallier E, Martin PM et al. (2001). Cancer Res 61: 1196–1206.

  • Rouault TA, Hentze MW, Caughman SW, Harford JB, Klausner RD . (1988). Science 241: 1207–1210.

  • Sakata J, Shimokubo T, Kitamura K, Nishizono M, Iehiki Y, Kangawa K et al. (1994). FEBS Lett 352: 105–108.

  • Shindo T, Kurihara Y, Nishimatsu H, Moriyama N, Kakoki M, Wang Y et al. (2001). Circulation 104: 1964–1971.

  • Sonenberg N . (1994). Curr Opin Genet Dev 4: 310–315.

  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E . (1998). Mol Cell Biol 18: 3112–3119.

  • van der Velden AW, Thomas AA . (1999). Int J Biochem Cell Biol 31: 87–106.

  • Willis AE . (1999). Int J Biochem Cell Biol 31: 73–86.

  • Wilusz J, Shenk T . (1988). Cell 52: 221–228.

  • Zhao Y, Hague S, Manek S, Zhang L, Bicknell R, Rees MC . (1998). Oncogene 16: 409–415.

  • Zuker M . (2003). Nucleic Acids Res 31: 3406–3415.

Download references

Acknowledgements

This work was supported by grant from the Inserm, INCa (Grant no. RS019), the foundation Lionel Perrier and the Assistance Publique-Hopitaux de Marseille (AP-HM). Fabienne Brenet was financed by the Association des Neuro-Oncologues d'Expression Française (ANOCEF) and the Association pour la Recherche Contre le Cancer (ARC). We are grateful to Professor Victor May (University of Vermont, College of Medicine) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L H Ouafik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenet, F., Dussault, N., Delfino, C. et al. Identification of secondary structure in the 5′-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation. Oncogene 25, 6510–6519 (2006). https://doi.org/10.1038/sj.onc.1209672

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209672

Keywords

This article is cited by

Search

Quick links