Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial mutations in cancer

Abstract

The metabolism of solid tumors is associated with high lactate production while growing in oxygen (aerobic glycolysis) suggesting that tumors may have defects in mitochondrial function. The mitochondria produce cellular energy by oxidative phosphorylation (OXPHOS), generate reactive oxygen species (ROS) as a by-product, and regulate apoptosis via the mitochondrial permeability transition pore (mtPTP). The mitochondria are assembled from both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) genes. The mtDNA codes for 37 genes essential of OXPHOS, is present in thousands of copies per cell, and has a very high mutations rate. In humans, severe mtDNA mutations result in multisystem disease, while some functional population-specific polymorphisms appear to have permitted humans to adapt to new environments. Mutations in the nDNA-encoded mitochondrial genes for fumarate hydratase and succinate dehydrogenase have been linked to uterine leiomyomas and paragangliomas, and cancer cells have been shown to induce hexokinase II which harnesses OXPHOS adenosine triphosphate (ATP) production to drive glycolysis. Germline mtDNA mutations at nucleotides 10398 and 16189 have been associated with breast cancer and endometrial cancer. Tumor mtDNA somatic mutations range from severe insertion–deletion and chain termination mutations to mild missense mutations. Surprisingly, of the 190 tumor-specific somatic mtDNA mutations reported, 72% are also mtDNA sequence variants found in the general population. These include 52% of the tumor somatic mRNA missense mutations, 83% of the tRNA mutations, 38% of the rRNA mutations, and 85% of the control region mutations. Some associations might reflect mtDNA sequencing errors, but analysis of several of the tumor-specific somatic missense mutations with population counterparts appear legitimate. Therefore, mtDNA mutations in tumors may fall into two main classes: (1) severe mutations that inhibit OXPHOS, increase ROS production and promote tumor cell proliferation and (2) milder mutations that may permit tumors to adapt to new environments. The former may be lost during subsequent tumor oxygenation while the latter may become fixed. Hence, mitochondrial dysfunction does appear to be a factor in cancer etiology, an insight that may suggest new approaches for diagnosis and treatment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  • Alonso A, Martin P, Albarran C, Aquilera B, Garcia O, Guzman A et al. (1997). Electrophoresis 18: 682–685.

  • Aoki M, Batista O, Bellacosa A, Tsichlis P, Vogt PK . (1998). Proc Natl Acad Sci USA 95: 14950–14955.

  • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al. (2001). Am J Hum Genet 69: 49–54.

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al. (2000). Science 287: 848–851.

  • Bianchi MS, Bianchi NO, Bailliet G . (1995). Cytogenet Cell Genet 71: 99–103.

  • Birnbaum MJ . (2004). Dev Cell 7: 781–782.

  • Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E et al. (1995). Nat Genet 11: 144–149.

  • Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P et al. (2005). Nucl Acids Res 1: 33 (database issue): D611–D613.

  • Brazil DP, Yang ZZ, Hemmings BA . (2004). Trends Biochem Sci 29: 233–242.

  • Brockington M, Sweeney MG, Hammans SR, Morgan-Hughes JA, Harding AE . (1993). Nat Genet 4: 67–71.

  • Brown MD, Hosseini SH, Torroni A, Bandelt HJ, Allen JC, Schurr TG et al. (1998). Am J Hum Genet 63: 1852–1861.

  • Brown MD, Sun F, Wallace DC . (1997). Am J Hum Genet 60: 381–387.

  • Brown MD, Zhadanov S, Allen JC, Hosseini S, Newman NJ, Atamonov VV et al. (2001). Hum Genet 109: 33–39.

  • Brown WM, Prager EM, Wan A, Wilson AC . (1982). J Mol Evol 18: 225–239.

  • Bustamante E, Pedersen PL . (1977). Proc Natl Acad Sci USA 74: 3735–3739.

  • Cann RL, Stoneking M, Wilson AC . (1987). Nature 325: 31–36.

  • Canter JA, Kallianpur AR, Parl FF, Millikan RC . (2005). Cancer Res 65: 8028–8033.

  • Chen JZ, Gokden N, Greene GF, Green B, Kadlubar FF . (2003). Carcinogenesis 24: 1481–1487.

  • Chen JZ, Gokden N, Greene GF, Mukunyadzi P, Kadlubar FF . (2002). Cancer Res 62: 6470–6474.

  • Chinnery PF, Samuels DC, Elson J, Turnbull DM . (2002). Lancet 360: 1323–1325.

  • Clayton DA, Davis RW, Vinograd J . (1970). J Mol Biol 47: 137–153.

  • Copeland WC, Wachsman JT, Johnson FM, Penta JS . (2002). Cancer Invest 20: 557–569.

  • Coskun PE, Beal MF, Wallace DC . (2004). Proc Natl Acad Sci USA 101: 10726–10731.

  • Evans AR, Limp-Foster M, Kelley MR . (2000). Mutat Res 461: 83–108.

  • Fish J, Raule N, Attardi G . (2004). Science 306: 2098–2101.

  • Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM et al. (2000). Science 287: 2017–2019.

  • Gatenby RA, Gillies RJ . (2004). Nat Rev Cancer 4: 891–899.

  • Glaichenhaus N, Leopold P, Cuzin F . (1986). EMBO J 5: 1261–1265.

  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N . (2001). Genes Dev 15: 1406–1418.

  • Habano W, Sugai T, Yoshida T, Nakamura S . (1999). Int J Cancer 83: 625–629.

  • Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS et al. (2003). Proteomics 3: 1801–1810.

  • Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA . (1990). Am J Hum Genet 46: 428–433.

  • Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham Jr SD et al. (1996). Genes Chromosomes Cancer 15: 95–101.

  • Ingman M, Kaessmann H, Paabo S, Gyllensten U . (2000). Nature 408: 708–713.

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N et al. (1998). Nature 394: 694–697.

  • Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G et al. (2001). Oncogene 20: 5195–5198.

  • Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavalli-Sforza LL . (1983). J Mol Evol 19: 255–271.

  • Kelley MR, Parsons SH . (2001). Anti Redox Signaling 3: 671–683.

  • Khogali SS, Mayosi BM, Beattie JM, McKenna WJ, Watkins H, Poulton J . (2001). Lancet 357: 1265–1267.

  • Kirches E, Krause G, Warich-Kirches M, Weis S, Schneider T, Meyer-Puttlitz B et al. (2001). Int J Cancer 93: 534–538.

  • Krieg RC, Knuechel R, Schiffmann E, Liotta LA, Petricoin III EF, Herrmann PC . (2004). Proteomics 4: 2789–2795.

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al. (2005). Science 309: 481–484.

  • Kurtz A, Lueth M, Kluwe L, Zhang T, Foster R, Mautner VF et al. (2004). Mol Cancer Res 2: 433–441.

  • LaBiche RA, Demars M, Nicolson GL . (1992). In Vivo 6: 317–324.

  • LaBiche RA, Yoshida M, Gallick GE, Irimura T, Robberson DL, Klostergaard J et al. (1988). J Cellular Biochem 36: 393–403.

  • Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH . (2004). Mutat Res 547: 71–78.

  • Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, Aittomaki K et al. (2004). Am J Pathol 164: 17–22.

  • Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P et al. (2001). Cancer Res 61: 5998–6001.

  • Liu VW, Wang Y, Yang HJ, Tsang PC, Ng TY, Wong LC et al. (2003). Hum Mutat 22: 173–174.

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al. (2004a). Mol Cell 16: 819–830.

  • Majewski N, Nogueira V, Robey RB, Hay N . (2004b). Mol Cell Biol 24: 730–740.

  • Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz G, Wiedmann M et al. (2004). Hum Mol Genet 13: 869–879.

  • Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M . (2002). Am J Pathol 160: 1857–1865.

  • McCord JM . (2000). Am J Med Genet 108: 652–659.

  • Merriwether DA, Clark AG, Ballinger SW, Schurr TG, Soodyall H, Jenkins T et al. (1991). J Mol Evol 33: 543–555.

  • Mishmar D, Ruiz-Pesini EE, Golik P, Macaulay V, Clark AG, Hosseini S et al. (2003). Proc Natl Acad Sci USA 100: 171–176.

  • Montiel-Sosa F, Ruiz-Pesini E, Enríquez JA, Marcuello A, Díez-Sánchez C, Montoya J et al. (2005). Gene (E-Pub ahead of print) doi, 10.1016/j.gene.2005.09.015.

  • Niemann S, Muller U . (2000). Nat Genet 26: 268–270.

  • Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D . (2002). Clin Cancer Res 8: 481–487.

  • Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M et al. (2001). Cancer Res 61: 7623–7626.

  • Pedersen PL . (1978). Prog Exp Tumor Res 22: 190–274.

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH . (2002). Biochim Biophys Acta 1555: 14–20.

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J et al. (2005). Proc Natl Acad Sci USA 102: 719–724.

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD et al. (1998). Nat Genet 20: 291–293.

  • Poulton J . (1998). Trends Genet 14: 387–389.

  • Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DI . (1998). Diabetologia 41: 54–58.

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC . (2004). Science 303: 223–226.

  • Ruiz-Pesini E, Wallace DC . (2006). Hum Mut (in press).

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M et al. (2005). Science 308: 1909–1911; published online 5 May 2005 (10.1126/science.1106653).

  • Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H et al. (2001). J Biol Chem 276: 41553–41558.

  • Taira M, Yoshida E, Kobayashi M, Yaginuma K, Koike K . (1983). Nucl Acids Res 11: 1635–1643.

  • Testa JR, Bellacosa A . (2001). Proc Natl Acad Sci USA 98: 10983–10985.

  • Tong BC, Ha PK, Dhir K, Xing M, Westra WH, Sidransky D et al. (2003). J Surg Oncol 82: 170–173.

  • Torroni A, Lott MT, Cabell MF, Chen Y, Laverge L, Wallace DC . (1994). Am J Hum Genet 55: 760–776.

  • Torroni A, Petrozzi M, D'Urbano L, Sellitto D, Zeviani M, Carrara F et al. (1997). Am J Hum Genet 60: 1107–11021.

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE et al. (2004). Nature 429: 417–423.

  • Trounce I, Neill S, Wallace DC . (1994). Proc Natl Acad Sci USA 91: 8334–8338.

  • Trounce I, Neill S, Wallace DC . (1995). Am J Hum Genet 57: A252.

  • Trounce IA, Kim YL, Jun AS, Wallace DC . (1996). Methods Enzymol 264: 484–509.

  • Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD et al. (2004). Am J Hum Genet 74: 153–159.

  • Wallace DC . (2005). Annu Rev Genet 39: 359–407.

  • Wallace DC, Brown MD, Lott MT . (1999). Gene 238: 211–230.

  • Wallace DC, Lott MT . (2002). Emery and Rimoin's Principles and Practice of Medical Genetics. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds). Churchill Livingstone: London, pp 299–409.

    Google Scholar 

  • Wallace DC, Ruiz-Pesini E, Mishmar D . (2003). Cold Spring Harbor Symposia Quant Biol 68: 479–486.

  • Wang Q, Ito M, Adams K, Li BU, Klopstock T, Maslim A et al. (2004). Am J Med Genet 131A: 50–58.

  • Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE et al. (2001). Proc Natl Acad Sci USA 98: 4022–4027.

  • Warburg O . (1931). The Metabolism of Tumors. R.R. Smith: New York.

    Google Scholar 

  • Warburg O . (1956). Science 123: 309–314.

  • Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW et al. (2005). Genes Chromosomes Cancer 44: 19–28.

  • Yanagihara M, Katano M, Takahashi-Sasaki N, Kimata K, Taira K, Andoh T . (2005). Cancer Sci 96: 620–626.

  • Yeh JJ, Lunetta KL, van Orsouw NJ, Moore Jr FD, Mutter GL, Vijg J et al. (2000). Oncogene 19: 2060–2066.

  • Yoneyama H, Hara T, Kato Y, Yamori T, Matsuura ET, Koike K . (2005). Mol Cancer Res 3: 14–20.

  • Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafe M, Olivieri F et al. (2003). Proc Natl Acad Sci USA 100: 1116–1121.

Download references

Acknowledgements

We thank Ms MT Lott for her assistance with this manuscript. This work has been supported by NIH Biomedical Informatics Training Grant LM07443 supporting MB and PB awarded to PB and NIH RO1 Grants NS21328, AG13154, NS41650, AG24373 and HL64017 awarded to DCW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Wallace.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brandon, M., Baldi, P. & Wallace, D. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006). https://doi.org/10.1038/sj.onc.1209607

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209607

Keywords

  • mtDNA
  • cancer
  • OXPHOS
  • adaptation
  • Warburg

This article is cited by

Search

Quick links