Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-β/Smad-induced growth arrest of prostate cells

Abstract

Transforming growth factor-β (TGF-β) elicits a potent growth inhibitory effect on many normal cells by binding to specific serine/threonine kinase receptors and activating specific Smad proteins, which regulate the expression of cell cycle genes, including the p21 cyclin-dependent kinase (CDK) inhibitor gene. Interestingly, cancer cells are often insensitive to the anti-mitogenic effects of TGF-β for which the molecular mechanisms are not well understood. In this study, we found that the candidate prostate cancer susceptibility gene ELAC2 potentiates TGF-β/Smad-induced transcriptional responses. ELAC2 associates with activated Smad2; the C-terminal MH2 domain of Smad2 interacts with the N-terminal region of ELAC2. Small interfering siRNA-mediated knock-down of ELAC2 in prostate cells suppressed TGF-β-induced growth arrest. Moreover, ELAC2 was shown to specifically associate with the nuclear Smad2 partner, FAST-1 and to potentiate the interaction of activated Smad2 with transcription factor Sp1. Furthermore, activation of the p21 CDK inhibitor promoter by TGF-β is potentiated by ELAC2. Taken together our data indicate an important transcriptional scaffold function for ELAC2 in TGF-β/Smad signaling mediated growth arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. (2004). Sicence 303: 848–851.

  • Chen G, Nomura M, Morinaga H, Matsubara E, Okabe T, Goto K et al. (2005a). J Biol Chem 280: 36355–36363.

  • Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M . (1997). Nature 389: 85–89.

  • Chen Y, Beck A, Davenport C, Chen Y, Shattuck D, Tavtigian SV . (2005b). BMC Mol Biol 6: 12.

  • Danielpour D . (2005). Eur J Cancer 41: 846–857.

  • Datto MB, Yu Y, Wang XF . (1995). J Biol Chem 270: 28623–28628.

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier J-M . (1998). EMBO J 17: 3091–3100.

  • El-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M et al. (1995). Cancer Res 55: 2910–2919.

  • Feng X-H, Lin X, Derynck R . (2000). EMBO J 19: 5178–5193.

  • Goldman LA, Cutrone EC, Kotenko SV, Krause CD, Langer JA . (1996). Biotechniques 21: 1013–1015.

  • Guo Y, Jacobs SC, Kyprianou N . (1997). Int J Cancer 71: 573–579.

  • Guo Y, Kyprianou N . (1998). Cell Growth Differ 9: 185–193.

  • Guo Y, Kyprianou N . (1999). Cancer Res 59: 1366–1371.

  • Heldin C-H, Miyazono K, ten Dijke P . (1997). Nature 390: 465–471.

  • Itoh S, Ericsson J, Nishikawa J, Heldin C-H, ten Dijke P . (2000). Nucleic Acids Res 28: 4291–4298.

  • Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin C-H et al. (2003). J Biol Chem 278: 3751–3761.

  • Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K . (1998). EMBO J 17: 4056–4065.

  • Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Lang S, Kato M et al. (1996). Clin Cancer Res 2: 1255–1261.

  • Korver W, Guevara C, Chen Y, Neuteboom S, Bookstein R, Tavtigian S et al. (2003). Int J Cancer 104: 283–288.

  • Kundu SD, Kim IY, Yang T, Doglio L, Lang S, Zhang X et al. (2000). Prostate 43: 118–124.

  • Larisch-Bloch S, Danielpour D, Roche NS, Lotan R, Hsing AY, Kerner H et al. (2000). Cell Growth Differ 11: 1–10.

  • Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang XF . (1995). J Biol Chem 270: 26750–26753.

  • Massagué J, Blain SW, Lo RS . (2000). Cell 51: 295–309.

  • Minagawa A, Takaku H, Takagi M, Nashimoto M . (2005). Cancer Lett 222: 211–215.

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K . (2002). Genes Cells 7: 1191–1204.

  • Moustakas A, Kardassis D . (1998). Proc Natl Acad Sci USA 95: 6733–6738.

  • Moustakas A, Souchelnytskyi S, Heldin C-H . (2001). J Cell Sci 114: 4359–4369.

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E et al. (1998). EMBO J 16: 5353–5362.

  • Nakashima K, Yanagisawa M, Arakawa H, Ochiai W, Arakawa H, Taga T . (1999). Science 284: 479–482.

  • Nicolas FJ, De Bosscher K, Schmierer B, Hill CS . (2004). J Cell Sci 117: 4113–4125.

  • Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engström U et al. (1998). FEBS Lett 434: 83–87.

  • Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A . (2000). J Biol Chem 275: 29244–29256.

  • Roberts AB, Sporn MB . (1990) In: Sporn MB and Roberts AB (eds). Peptide Growth Factors and Their Receptors Part I, vol. 95. Springer-Verlag: Berlin, pp 419–472.

    Book  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massagué J . (2004). Cell 117: 211–223.

  • Shea PR, Ferrell RE, Patrick AL, Kuller LH, Bunker CH . (2002). Hum Genet 111: 398–400.

  • Shi Y, Massagué J . (2003). Cell 113: 685–700.

  • Siegel PM, Massagué J . (2003). Nat Rev Cancer 3: 807–821.

  • Song K, Cornelius SC, Danielpour D . (2000). Cancer Res 63: 4358–4367.

  • Takaku H, Minagawa A, Takagi M, Nashimoto M . (2003). Nucleic Acids Res 31: 2272–2278.

  • Tang B, de Castro K, Barnes HE, Parks WT, Stewart L, Böttinger EP et al. (1999). Cancer Res 59: 4834–4842.

  • Tavtigian SV, Simard J, Teng DHF, Abtin V, Baumgard M, Beck A et al. (2001). Nat Genet 27: 172–180.

  • ten Dijke P, Goumans M-J, Itoh F, Itoh S . (2002). J Cell Physiol 191: 1–16.

  • Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J . (1994). Nature 370: 341–347.

  • Wang L, McDonnell SK, Elkins DA, Slager SL, Christensen E, Marks AF et al. (2001). Cancer Res 61: 6494–6499.

  • Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B . (1998). Mol Cell 2: 121–127.

Download references

Acknowledgements

This research was supported by AstraZeneca Research Grant 2004 (SI), Kowa Life Science Foundation (SI), Kato Memorial Bioscience Foundation (SI), Japan Society for the Promotion Science (FI) and Grants-in-aid for Scientific Research and a grant of the Genome Network Project from the Ministry of Education, Culture, Sports, Science and Technology (SI and MK) and Dutch Cancer Society and EC 6th framework STREP Tumor-Host Genomics (Pt-D). We thank Drs SV Tavtigian, B Vogelstein, A Moustakas, T Imamura and K Iwata for valuable reagents and Dr TR Brummelkamp for technical advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, D., Itoh, S., Watanabe, Y. et al. ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-β/Smad-induced growth arrest of prostate cells. Oncogene 25, 5591–5600 (2006). https://doi.org/10.1038/sj.onc.1209571

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209571

Keywords

This article is cited by

Search

Quick links