Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ionizing radiation induces apoptosis and inhibits neuronal differentiation in rat neural stem cells via the c-Jun NH2-terminal kinase (JNK) pathway

Abstract

A substantial number of neural stem cells (NSCs) continue to proliferate and generate neurons in the central nervous system throughout life. Ionizing radiation, an important adjuvant therapy for glioma patients, may damage NSCs and cause neuronal deficits, such as cognitive dysfunction and memory impairment. However, the precise mechanism of radiation effects on death and differentiation of NSCs remains largely unknown. Here, we found that radiation induced apoptosis in NSCs via the mitochondrial pathway, upregulating the ratio of Bax to Bcl-2 and releasing cytochrome c into the cytoplasm. Radiation also inhibited neuronal differentiation of NSCs by 50%. Of the three stress-associated mitogen-activated protein kinases (MAPKs), only c-Jun NH2-terminal kinase (JNK) was activated in NSCs after radiation. Interestingly, JNK inhibition by the specific inhibitor SP600125 rescued NSCs from apoptosis and improved neuronal differentiation. Furthermore, we examined whether radiation directly inhibits neuronal differentiation or not. Radiation did not affect the promoter activity of NeuroD, a basic helix–loop–helix transcription factor that regulates the expression of neuronal differentiation markers. Radiation induced more apoptosis in NeuroD-positive cells than NeuroD-negative cells. We concluded that radiation activates JNK and induces apoptosis, especially in neural progenitor cells, resulting in the inhibition of neurogenesis. Our findings raise the possibility that JNK inhibition has therapeutic potential in protecting NSCs from the adverse effects of radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

NSC:

neural stem cell

bFGF:

basic fibroblast growth factor

EGF:

epidermal growth factor

GFAP:

glial fibrillary acidic protein

CNPase:

2′-3′-cyclic nucleotide 3′-phosphodiesterase

TMRE:

tetramethylrhodamine ethyl ester

MAPK:

mitogen-activated protein kinase

JNK:

c-Jun NH2 terminal kinase

ERK:

extracellular signal-regulated kinase

References

  • Behrens A, Sibilia M, Wagner EF . (1999). Nat Genet 21: 326–329.

  • Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG . (2003). J Cell Biol 162: 469–479.

  • Bjorkblom B, Ostman N, Hongisto V, Komarovski V, Filen JJ, Nyman TA et al. (2005). J Neurosci 25: 6350–6361.

  • Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M . (2003). Dev Cell 4: 521–533.

  • Chang L, Karin M . (2001). Nature 410: 37–40.

  • Cheng A, Chan SL, Milhavet O, Wang S, Mattson MP . (2001). J Biol Chem 276: 43320–43327.

  • Cho JH, Tsai MJ . (2004). Mol Neurobiol 30: 35–47.

  • Ciccolini F, Svendsen CN . (1998). J Neurosci 18: 7869–7880.

  • Crossen JR, Garwood D, Glatstein E, Neuwelt EA . (1994). J Clin Oncol 12: 627–642.

  • Davis RJ . (2000). Cell 103: 239–252.

  • Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S . (2003). Oncogene 22: 5885–5896.

  • Desagher S, Martinou JC . (2000). Trend Cell Biol 10: 369–377.

  • Diez del Corral R, Storey KG . (2001). Nat Rev Neurosci 2: 835–839.

  • Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V . (2004). J Biol Chem 279: 55385–55392.

  • Erlandsson A, Enarsson M, Forsberg-Nilsson K . (2001). J Neurosci 21: 3483–3491.

  • Gage FH . (2000). Science 287: 1433–1438.

  • Galea E, Feinstein DL, Reis DJ . (1992). Proc Natl Acad Sci USA 89: 10945–10949.

  • Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR . (2000). Nat Cell Biol 2: 156–162.

  • Green DR, Reed JC . (1998). Science 281: 1309–1312.

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). Genes Dev 13: 1899–1911.

  • Harada J, Foley M, Moskowitz MA, Waeber C . (2004). J Neurochem 88: 1026–1039.

  • Harris CA, Johnson Jr EM . (2001). J Biol Chem 276: 37754–37760.

  • Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ . (2000). Mol Cell Biol 20: 3292–3307.

  • Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G . (1999). Ann NY Acad Sci 887: 18–30.

  • Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD . (1996). Genes Dev 10: 3129–3140.

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . (2004). Cell Death Differ 11: 448–457.

  • Kondo S, Miyatake S, Iwasaki K, Oda Y, Kikuchi H, Zu Y et al. (1992). Neurosurgery 30: 506–511.

  • Kondo S, Morimura T, Barnett GH, Kondo Y, Peterson JW, Kaakaji R et al. (1996). Oncogene 13: 1773–1779.

  • Lei K, Davis RJ . (2003). Proc Natl Acad Sci USA 100: 2432–2437.

  • Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR . (2004). Radiat Res 161: 17–27.

  • Lonergan PE, Martin DS, Horrobin DF, Lynch MA . (2002). J Biol Chem 277: 20804–20811.

  • Lynch AM, Moore M, Craig S, Lonergan PE, Martin DS, Lynch MA . (2003). J Biol Chem 278: 51075–51084.

  • Madsen TM, Kristjansen PE, Bolwig TG, Wortwein G . (2003). Neuroscience 119: 635–642.

  • Monje ML, Mizumatsu S, Fike JR, Palmer TD . (2002). Nat Med 8: 955–962.

  • Oltvai ZN, Korsmeyer SJ . (1994). Cell 79: 189–192.

  • Peissner W, Kocher M, Treuer H, Gillardon F . (1999). Brain Res Mol Brain Res 71: 61–68.

  • Ross SE, Greenberg ME, Stiles CD . (2003). Neuron 39: 13–25.

  • Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I . (2002). J Biol Chem 277: 46645–46650.

  • Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y et al. (2001). Proc Natl Acad Sci USA 98: 113–118.

  • Surma-aho O, Niemela M, Vilkki J, Kouri M, Brander A, Salonen O et al. (2001). Neurology 56: 1285–1290.

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Science 288: 870–874.

  • Verheij M, Bartelink H . (2000). Cell Tissue Res 301: 133–142.

  • Verheij M, Ruiter GA, Zerp SF, van Blitterswijk WJ, Fuks Z, Haimovitz-Friedman A et al. (1998). Radiother Oncol 47: 225–232.

  • Waetzig V, Herdegen T . (2005). Trends Pharmacol Sci 26: 455–461.

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . (1995). Science 270: 1326–1331.

  • Yamamoto K, Ichijo H, Korsmeyer SJ . (1999). Mol Cell Biol 19: 8469–8478.

  • Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN et al. (2004). Mol Cell 13: 329–340.

  • Zhao WQ, Alkon DL, Ma W . (2003). J Neurosci Res 72: 334–342.

Download references

Acknowledgements

We thank Dr Ming-Jer Tsai for providing the BETA2 promoter-luciferase plasmid and Mr Donald Norwood for his help in editing the manuscript. Financial support by USPHS Grants CA088936 and CA108558 (S Kondo), a start-up fund from The University of Texas M. D. Anderson Cancer Center (S Kondo), and a generous donation from the Anthony D Bullock III Foundation (S Kondo and Y Kondo) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzawa, T., Iwado, E., Aoki, H. et al. Ionizing radiation induces apoptosis and inhibits neuronal differentiation in rat neural stem cells via the c-Jun NH2-terminal kinase (JNK) pathway. Oncogene 25, 3638–3648 (2006). https://doi.org/10.1038/sj.onc.1209414

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209414

Keywords

This article is cited by

Search

Quick links