Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells

Abstract

Connective tissue growth factor (CTGF/CCN2) can be induced by various forms of stress such as exposure to high glucose, mechanical load, or hypoxia. Here, we investigated the molecular mechanism involved in the induction of ctgf/ccn2 by hypoxia in a human chondrosarcoma cell line, HCS-2/8. Hypoxia increased the ctgf/ccn2 mRNA level by altering the 3′-untranslated region (UTR)-mediated mRNA stability without requiring de novo protein synthesis. After a series of extensive analyses, we eventually found that the cis-repressive element of 84 bases within the 3′-UTR specifically bound to a cytoplasmic/nuclear protein. By conducting a UV crosslinking assay, we found the cytoplasmic/nuclear protein to be a 35 kDa molecule that bound to the cis-element in a hypoxia-inducible manner. These results suggest that a cis-element in the 3′-UTR of ctgf/ccn2 mRNA and trans-factor counterpart(s) play an important role in the post-transcriptional regulation by determining the stability of ctgf/ccn2 mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Babic AM, Chen CC, Lau LF . (1999). Mol Cell Biol 19: 2958–2966.

  • Bork P . (1993). FEBS Lett 327: 125–130.

  • Bradham DM, Igarashi A, Potter RL, Grotendorst GR . (1991). J Cell Biol 114: 1285–1294.

  • Brigstock DR . (1999). Endocr Rev 20: 189–206.

  • Carmeliet P, Jain RK . (2000). Nature 407: 249–257.

  • Chen CY, Shyu AB . (1995). Trends Biochem Sci 20: 465–470.

  • Czyzyk-Krzeska MF, Dominski Z, Kole R, Millhorn DE . (1994). J Biol Chem 269: 9940–9945.

  • Dehlin E, Wormington M, Korner CG, Wahle E . (2000). EMBO J 19: 1079–1086.

  • Dreyfuss G, Kim VN, Kataoka N . (2002). Nat Rev Mol Cell Biol 3: 195–205.

  • Eguchi T, Kubota S, Kondo S, Shimo T, Hattori T, Nakanishi T et al. (2001). J Biochem (Tokyo) 130: 79–87.

  • Fan XC, Steitz JA . (1998). Proc Natl Acad Sci USA 95: 152935–152938.

  • Ford LP, Wilusz J . (1999). Methods 17: 21–27.

  • Goldberg-Cohen I, Furneauxb H, Levy AP . (2002). J Biol Chem 277: 13635–13640.

  • Hew Y, Grzelczak Z, Lau C, Keeley FW . (1999). J Biol Chem 274: 14415–14421.

  • Hew Y, Lau C, Grzelczak Z, Keeley FW . (2000). J Biol Chem 275: 24857–24864.

  • Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH . (2004). Am J Physiol Renal Physiol 287: 1223–1232.

  • Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T et al. (2002). Carcinogenesis 23: 769–776.

  • Korner CG, Wormington M, Muckenthaler M, Schneider S, Dehlin E, Wahle E . (1998). EMBO J 17: 5427–5437.

  • Kubota S, Hattori T, Nakanishi T, Takigawa M . (1999). FEBS Lett 450: 84–88.

  • Kubota S, Kondo S, Eguchi T, Hattori T, Nakanishi T, Pomerantz RJ et al. (2000). Oncogene 19: 4773–4786.

  • Kubota S, Moritani NH, Kawaki H, Minura H, Minato M, Takigawa M . (2003). Bone 33: 694–702.

  • Kubota S, Mukudai Y, Moritani NH, Nakao K, Kawata K, Takigawa M . (2005). FEBS Lett 579: 3751–3758.

  • Kumar S, Hand AT, Connor JR, Dodds RA, Ryan PJ, Trill JJ et al. (1999). J Biol Chem 274: 17123–17131.

  • Kunz M, Ibrahim SM . (2003). Mol Cancer 2: 1–13.

  • Kunz M, Moeller S, Koczan D, Lorenz P, Wenger RH, Glocker MO et al. (2003). J Biol Chem 278: 45651–45660.

  • Lau LF, Lam SC . (1999). Exp Cell Res 248: 44–57.

  • Levy AP, Levy NS, Goldberg MA . (1996a). J Biol Chem 271: 2746–2753.

  • Levy AP, Levy NS, Goldberg MA . (1996b). J Biol Chem 271: 25492–25497.

  • Levy AP, Levy NS, Wegner S, Goldberg MA . (1995). J Biol Chem 270: 13333–13340.

  • Levy NS, Chung S, Furneaux H, Levy AP . (1998). J Biol Chem 273: 6417–6423.

  • Macdonald LE, Durbin RK, Dunn JJ, McAllister WT . (1994). J Mol Biol 238: 145–158.

  • Macdonald LE, Zhou Y, McAllister WT . (1993). J Mol Biol 232: 1030–1047.

  • Mukudai Y, Kubota S, Takanori E, Kondo S, Nakao K, Takigawa M . (2005). J Biol Chem 280: 3166–3177.

  • Rajagopalan LE, Malter JS . (1994). J Biol Chem 269: 23882–23888.

  • Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT . (2002). J Biol Chem 277: 42912–42918.

  • Rondon IJ, MacMillan LA, Beckman BS, Goldberg MA, Schneider T, Bunn HF, Malter JS . (1991). J Biol Chem 266: 16594–16598.

  • Ross J . (1995). Microbiol Rev 59: 423–450.

  • Shih S, Claffey KP . (1998). Int J Exp Pathol 79: 347–357.

  • Shih SC, Claffey KP . (1999). J Biol Chem 274: 1359–1365.

  • Shimo T, Nakanishi T, Kimura Y, Nishida T, Ishizeki K, Matsumura T et al. (1999a). J Biochem 124: 130–140.

  • Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T et al. (1999b). J Biochem 126: 137–145.

  • Takigawa M . (2003). Drug News Perspect 16: 11–21.

  • Takigawa M, Nakanishi T, Kubota S, Nishida T . (2003). J Cell Physiol 194: 256–266.

  • Takigawa M, Tajima K, Pan HO, Enomoto M, Kinoshita A, Suzuki F et al. (1989). Cancer Res 49: 3996–4002.

  • Wang GL, Semenza GL . (1993). J Biol Chem 268: 21513–21518.

  • Wang GL, Jiang BH, Rue EA, Semenza GL . (1995). Proc Natl Acad Sci USA 92: 5510–5514.

Download references

Acknowledgements

This work was supported in part by the programs Grants-in-Aid for Scientific Research (SK, SK, MT) and Exploratory Research (MT) of the Ministry of Education, Science, Sports, and Culture of Japan; Grants-in-Aid for JSPS Fellows (SK); Grants-in-Aid for Specific Diseases of the Ministry of Public Health and Welfare of Japan (MT); and by grants from the Naito Foundation (MT), the Nakatomi Health Science Foundation (SK, MT), the Foundation for Growth Science in Japan (MT), the Sumitomo Foundation (MT), and Research for the Future Programme of The Japan Society for the Promotion of Science (JSPS; Project: Biological Tissue Engineering, JSPS-RFTF98I00201). We thank Drs Tohru Nakanishi and Takanori Eguchi for their helpful suggestions, Kazumi Ohyama for technical assistance, and Yuki Nonami for secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Takigawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, S., Kubota, S., Mukudai, Y. et al. Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 25, 1099–1110 (2006). https://doi.org/10.1038/sj.onc.1209129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209129

Keywords

This article is cited by

Search

Quick links