Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation

Abstract

Gli family members mediate constitutive Hedgehog signaling in the common skin cancer, basal cell carcinoma (BCC). Snail/Snai1 is rapidly induced by Gli1 in vitro, and is coexpressed with Gli1 in human hair follicles and skin tumors. In the current study, we generated a dominant-negative allele of Snail, SnaZFD, composed of the zinc-finger domain and flanking sequence. In promoter–reporter assays, SnaZFD blocked the activity of wild-type Snail on the E-cadherin promoter. Snail loss-of-function mediated by SnaZFD or by one of several short hairpin RNAs inhibited transformation of RK3E epithelial cells by Gli1. Conversely, enforced expression of Snail promoted transformation in vitro by Gli1, but not by other genes that were tested, including Notch1, ErbB2, and N-Ras. As observed for Gli1, wild-type Snail repressed E-cadherin in RK3E cells and induced blebbing of the cytoplasmic membrane. Induction of a conditional Gli1 transgene in the basal keratinocytes of mouse skin led to rapid upregulation of Snail transcripts and to cell proliferation in the interfollicular epidermis. Established Gli1-induced skin lesions exhibited molecular similarities to BCC, including loss of E-cadherin. The results identify Snail as a Gli1-inducible effector of transformation in vitro, and an early Gli1-responsive gene in the skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Agren M, Kogerman P, Kleman MI, Wessling M and Toftgard R . (2004). Gene, 330, 101–114.

  • Ascano JM, Beverly LJ and Capobianco AJ . (2003). J. Biol. Chem., 278, 8771–8779.

  • Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP and Epstein Jr EH . (1999). Nat. Med., 5, 1285–1291.

  • Aybar MJ, Nieto MA and Mayor R . (2003). Development, 130, 483–494.

  • Bachelder RE, Yoon SO, Franci C, Garcia de Herreros A and Mercurio AM . (2005). J. Cell Biol., 168, 29–33.

  • Bardelli A, Saha S, Sager JA, Romans KE, Xin B, Markowitz SD, Lengauer C, Velculescu VE, Kinzler KW and Vogelstein B . (2003). Clin. Cancer Res., 9, 5607–5615.

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J and Garcia de Herreros A . (2000). Nat. Cell Biol., 2, 84–89.

  • Berman DM, Karhadkar SS, Maitra A, Montes DO, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN and Beachy PA . (2003). Nature, 425, 846–851.

  • Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, Toftgard R and Mcdonnell TJ . (2004). J. Biol. Chem., 279, 1197–1205.

  • Blanpain C, Lowry WE, Geoghegan A, Polak L and Fuchs E . (2004). Cell, 118, 635–648.

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M and Cano A . (2003). J. Cell Sci., 116, 499–511.

  • Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA and Oro AE . (2004). Genes Dev., 18, 2724–2729.

  • Callahan CA and Oro AE . (2001). Curr. Opin. Genet Dev., 11, 541–546.

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA . (2000). Nat. Cell Biol., 2, 76–83.

  • Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA and Dlugosz AA . (1999). Dev. Biol., 205, 1–9.

  • Cunningham CC, Leclerc N, Flanagan LA, Lu M, Janmey PA and Kosik KS . (1997). J. Cell Biol., 136, 845–857.

  • Dahmane N, Lee J, Robins P, Heller P and Ruiz i Altaba A . (1997). Nature, 389, 876–881.

  • di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR and Aaronson SA . (1987). Science, 237, 178–182.

  • Duman-Scheel M, Weng L, Xin S and Du W . (2002). Nature, 417, 299–304.

  • Fan CM and Tessier-Lavigne M . (1994). Cell, 79, 1175–1186.

  • Fan H and Khavari PA . (1999). J. Cell Biol., 147, 71–76.

  • Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH and Stossel TP . (2001). J. Cell Biol., 155, 511–517.

  • Foster KW, Frost AR, McKie-Bell P, Lin CY, Engler JA, Grizzle WE and Ruppert JM . (2000). Cancer Res., 60, 6488–6495.

  • Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK, Frost AR, Louro ID, Townes TM, Paterson AJ, Kudlow JE, Lobo-Ruppert SM and Ruppert JM . (2005). Oncogene, 24, 1491–1500.

  • Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W, Hayes MR, Broker TR, Chow LT and Ruppert JM . (1999). Cell Growth Differ., 10, 423–434.

  • Frisch SM . (1994). J. Cell Biol., 127, 1085–1096.

  • Ghali L, Wong ST, Green J, Tidman N and Quinn AG . (1999). J. Invest. Dermatol., 113, 595–599.

  • Goodrich LV, Milenkovic L, Higgins KM and Scott MP . (1997). Science, 277, 1109–1113.

  • Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC and Dlugosz AA . (2000). Nat. Genet, 24, 216–217.

  • Hay ED . (1995). Acta Anat., 154, 8–20.

  • Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D, Liu J, Michael LE, Glick A and Dlugosz AA . (2005). Genes Dev., 19, 214–223.

  • Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y and Fuchs E . (2005). PLoS Biol., 3, e11.

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM and Beachy PA . (2004). Nature, 431, 707–712.

  • Kraus MH, Popescu NC, Amsbaugh SC and King CR . (1987). EMBO J., 6, 605–610.

  • Ling G, Ahmadian A, Persson A, Unden AB, Afink G, Williams C, Uhlen M, Toftgard R, Lundeberg J and Ponten F . (2001). Oncogene, 20, 7770–7778.

  • Louro ID, Bailey EC, Li X, South LS, McKie-Bell PR, Yoder BK, Huang CC, Johnson MR, Hill AE, Johnson RL and Ruppert JM . (2002). Cancer Res., 62, 5867–5873.

  • Louro ID, McKie-Bell P, Gosnell H, Brindley BC, Bucy RP and Ruppert JM . (1999). Cell Growth Differ., 10, 503–516.

  • McGill MA and McGlade CJ . (2003). J. Biol. Chem., 278, 23196–23203.

  • McGowan KM and Coulombe PA . (1998). J. Cell Biol., 143, 469–486.

  • McMahon AP, Ingham PW and Tabin CJ . (2003). Curr. Top Dev. Biol., 53, 1–114.

  • Miller SJ . (1995). Clin. Dermatol., 13, 527–536.

  • Morgenstern JP and Land H . (1990). Nucl. Acids Res., 18, 3587–3596.

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP and Radtke F . (2003). Nat. Genet, 33, 416–421.

  • Nieto MA . (2002). Nat. Rev. Mol. Cell Biol., 3, 155–166.

  • Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG and Toftgard R . (2000). Proc. Natl. Acad. Sci. USA, 97, 3438–3443.

  • Ohkubo T and Ozawa M . (2004). J. Cell Sci., 117, 1675–1685.

  • Oro AE and Higgins K . (2003). Dev. Biol., 255, 238–248.

  • Oro AE, Higgins KM, Hu ZL, Bonifas JM, Epstein EH and Scott MP . (1997). Science, 276, 817–821.

  • Pandya AY, Talley LI, Frost AR, Fitzgerald TJ, Trivedi V, Chakravarthy M, Chhieng DC, Grizzle WE, Engler JA, Krontiras H, Bland KI, Lobuglio AF, Lobo-Ruppert SM and Ruppert JM . (2004). Clin. Cancer Res., 10, 2709–2719.

  • Pasca di Magliano M and Hebrok M . (2003). Nat. Rev. Cancer, 3, 903–911.

  • Pizarro A, Benito N, Navarro P, Palacios J, Cano A, Quintanilla M, Contreras F and Gamallo C . (1994). Br. J. Cancer, 69, 157–162.

  • Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R and Bosserhoff AK . (2001). J. Biol. Chem., 276, 24661–24666.

  • Ruiz i Altaba A, Sanchez P and Dahmane N . (2002). Nat. Rev. Cancer, 2, 361–372.

  • Ruppert JM, Vogelstein B and Kinzler KW . (1991). Mol. Cell. Biol., 11, 1724–1728.

  • Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T and Hudson LG . (2005). J. Cell Physiol., 202, 858–866.

  • Sheffield JB, Graff D and Li HP . (1987). Anal Biochem., 166, 49–54.

  • St Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R and McMahon AP . (1998). Curr. Biol., 8, 1058–1068.

  • Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR and Mitchison TJ . (2003). Science, 299, 1743–1747.

  • Thiery JP . (2003). Curr. Opin. Cell Biol., 15, 740–746.

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M and Fuchs E . (2004). Science, 303, 359–363.

  • Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I and Nieto MA . (2004). Genes Dev., 18, 1131–1143.

  • Vogelstein B and Kinzler KW . (2004). Nat. Med., 10, 789–799.

  • Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA and Baylin SB . (2003). Nature, 422, 313–317.

  • Xie JW, Murone M, Luoh SM, Ryan A, Gu QM, Zhang CH, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH and de Sauvage FJ . (1998). Nature, 391, 90–92.

  • Yook JI, Li XY, Ota I, Fearon ER and Weiss SJ . (2005). J. Biol. Chem., 280, 11740–11748.

  • Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D and Iannaccone P . (2002). J. Biol. Chem., 277, 5548–5555.

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M and Hung MC . (2004). Nat. Cell Biol., 6, 931–940.

Download references

Acknowledgements

We thank Antonio Garcia de Herreros, Robert Kay, C Jane McGlade and Jeffrey E Kudlow for sharing plasmid constructs, Bert Vogelstein and colleagues for sharing RNA in situ hybridization methods, Andrzej A Dlugosz for advice on keratinocyte isolation, and Lawrence A Donehower for advice on p53 genotyping. This research was supported by Grants CA65686, CA094030, CA89019, P30CA13148, and P50CA097247 from the US National Cancer Institute and by a gift to the Comprehensive Cancer Center from the Avon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Lobo-Ruppert.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Deng, W., Nail, C. et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25, 609–621 (2006). https://doi.org/10.1038/sj.onc.1209077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209077

Keywords

This article is cited by

Search

Quick links