Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Resensitization of breast cancer cells to anoikis by Tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion

Abstract

Two most common properties of malignant cells are the presence of aberrant actin cytoskeleton and resistance to anoikis. Suppression of several key cytoskeletal proteins, including tropomyosin-1 (TM1), during neoplastic transformation is hypothesized to contribute to the altered cytoskeleton and neoplastic phenotype. Using TM1 as a paradigm, we have shown that cytoskeletal proteins induce anoikis in breast cancer (MCF-7 and MDA MB 231) cells. Here, we have tested the hypothesis that TM1-mediated cytoskeletal changes regulate integrin activity and the sensitivity to anoikis. TM1 expression in MDA MB 231 cells promotes the assembly of stress fibers, induces rapid anoikis via caspase-dependent pathways involving the release of cytochrome c. Further, TM1 inhibits binding of MDA MB 231 cells to collagen I, but promotes adhesion to laminin. Inhibition of Rho kinase disrupts TM1-mediated cytoskeletal reorganization and adhesion to the extracellular matrix components, whereas the parental cells attach to collagen I, spread and form extensive actin meshwork in the presence of Rho kinase inhibitor, underscoring the differences in parental and TM1-transduced breast cancer cells. Further, treatment with the cytoskeletal disrupting drugs rescues the cells from TM1-induced anoikis. These new findings demonstrate that the aberrant cytoskeleton contributes to neoplastic transformation by conferring resistance to anoikis. Restoration of stress fiber network through enhanced expression of key cytoskeletal proteins may modulate the activity of focal adhesions and sensitize the neoplastic cells to anoikis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alford D, Pitha-Rowe P and Taylor-Papadimitriou J . (1998). Biochem. Soc. Symp., 63, 245–259.

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y and Kaibuchi K . (1997). Science, 275, 1308–1311.

  • Aoudjit F and Vuori K . (2001). J. Cell Biol., 152, 633–643.

  • Aplin AE and Juliano RL . (2001). J. Cell Biol., 155, 187–191.

  • Aplin AE, Stewart SA, Assoian RK and Juliano RL . (2001). J. Cell Biol., 153, 273–282.

  • Bamburg JR and Wiggan OP . (2002). Trends Cell Biol., 12, 598–605.

  • Bharadwaj S, Hitchcock-DeGregori S, Thorburn A and Prasad GL . (2004). J. Biol. Chem., 279, 14039–14048.

  • Bharadwaj S and Prasad GL . (2002). Cancer Lett., 183, 205–213.

  • Bhattacharya B, Prasad GL, Valverius EM, Salomon DS and Cooper HL . (1990). Cancer Res., 50, 2105–2112.

  • Bissell MJ and Radisky D . (2001). Nat. Rev. Cancer, 1, 46–54.

  • Braverman RH, Cooper HL, Lee HS and Prasad GL . (1996). Oncogene, 13, 537–545.

  • Budihardjo I, Oliver H, Lutter M, Luo X and Wang X . (1999). Annu. Rev. Cell Dev. Biol., 15, 269–290.

  • Calderwood DA, Shattil SJ and Ginsberg MH . (2000). J. Biol. Chem., 275, 22607–22610.

  • Caruso DA and McIntyre BW . (2001). Cell Death Differ., 8, 665–678.

  • Cheng T-L, Symons M and Jou T-S . (2004). Exp. Cell Res., 295, 497–511.

  • Chrenek MA, Wong P and Weaver VM . (2001). Breast Cancer Res., 3, 224–229.

  • Christerson LB, Vanderbilt CA and Cobb MH . (1999). Cell Motil. Cytoskeleton, 43, 186–198.

  • Chrzanowska-Wodnicka M and Burridge K . (1996). J. Cell Biol., 133, 1403–1415.

  • Chung J, Yoon S, Datta K, Bachelder RE and Mercurio AM . (2004). Cancer Res., 64, 4711–4716.

  • Coll ML, Rosen K, Ladeda V and Filmus J . (2002). Oncogene, 21, 2908–2913.

  • Coniglio SJ, Jou TS and Symons M . (2001). J. Biol. Chem., 276, 28113–28120.

  • Cooper JA . (2002). Curr. Biol., 12, R523–R525.

  • Critchley DR . (2000). Curr. Opin. Cell Biol., 12, 133–139.

  • Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R, Koul D, Bookstein R, Stokoe D, Yung WK, Mills GB and Steck PA . (1998). Cancer Res., 58, 5285–5290.

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK and Brugge JS . (2002). Cell, 111, 29–40.

  • Debnath J, Muthuswamy SK and Brugge JS . (2003). Methods, 30, 256–268.

  • DeMali KA, Wennerberg K and Burridge K . (2003). Curr. Opin. Cell Biol., 15, 572–582.

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA and Nosworthy NJ . (2003). Physiol. Rev., 83, 433–473.

  • Douma S, van Laar T, Zevenhoven J, Meuwissen R, van Garderen E and Peeper DS . (2004). Nature, 430, 1034–1039.

  • Falcioni R, Sacchi A, Resau J and Kennel SJ . (1988). Cancer Res., 48, 816–821.

  • Fincham VJ, James M, Frame MC and Winder SJ . (2000). EMBO J., 19, 2911–2923.

  • Frisch SM and Screaton RA . (2001). Curr. Opin. Cell Biol., 13, 555–562.

  • Geneste O, Copeland JW and Treisman R . (2002). J. Cell Biol., 157, 831–838.

  • Giancotti FG and Ruoslahti E . (1990). Cell, 60, 849–859.

  • Gilmore AP, Metcalfe AD, Romer LH and Streuli CH . (2000). J. Cell Biol., 149, 431–446.

  • Guo W and Giancotti FG . (2004). Nat. Rev. Mol. Cell Biol., 5, 816–826.

  • Haslam SZ and Woodward TL . (2003). Breast Cancer Res., 5, 208–215.

  • Heino J . (2000). Matrix Biol., 19, 319–323.

  • Izawa I, Amano M, Chihara K, Yamamoto T and Kaibuchi K . (1998). Oncogene, 17, 2863–2871.

  • Janes SM and Watt FM . (2004). J. Cell Biol., 166, 419–431.

  • Kozlova NI, Morozevich GE, Chubukina AN and Berman AE . (2001). Oncogene, 20, 4710–4717.

  • Kruidering M and Evan GI . (2000). IUBMB Life, 50, 85–90.

  • Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J and Van Obberghen-Schilling E . (2000). Mol. Biol. Cell, 11, 1103–1112.

  • Li Q, Dai Y, Guo L, Liu Y, Hao C, Wu G, Basora N, Michalak M and Chen XZ . (2003). J. Mol. Biol., 325, 949–962.

  • Lin JJ, Warren KS, Wamboldt DD, Wang T and Lin JL . (1997). Int. Rev. Cytol., 170, 1–38.

  • Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K and Mills GB . (1999). Oncogene, 18, 7034–7045.

  • Maemura M, Akiyama SK, Woods Jr VL and Dickson RB . (1995). Clin. Exp Metast., 13, 223–235.

  • Mahadev K, Raval G, Bharadwaj S, Willingham MC, Lange EM, Vonderhaar BKV, Salomon D and Prasad GL . (2002). Exp. Cell Res., 279, 40–51.

  • Manohar A, Shome SG, Lamar J, Stirling L, Iyer V, Pumiglia K and DiPersio CM . (2004). J. Cell Sci., 117, 4043–4054.

  • Marco RA, Diaz-Montero CM, Wygant JN, Kleinerman ES and McIntyre BW . (2003). J. Cell Biochem., 88, 1038–1047.

  • Marston S, Burton D, Copeland O, Fraser I, Gao Y, Hodgkinson J, Huber P, Levine B, el-Mezgueldi M and Notarianni G . (1998). Acta Physiol. Scand., 164, 401–414.

  • Martin SS and Leder P . (2001). Mol. Cell. Biol., 21, 6529–6536.

  • Martin SS and Vuori K . (2004). Biochim. Biophys. Acta, 1692, 145–157.

  • Mercurio AM, Rabinovitz I and Shaw LM . (2001). Curr. Opin. Cell Biol., 13, 541–545.

  • Narumiya S, Ishizaki T and Uehata M . (2000). Methods Enzymol., 325, 273–284.

  • Normanno N, Luca AD, Bianco C, Maiello MR, Carriero MV, Rehman A, Wechselberger C, Arra C, Strizzi L, Sanicola M and Salomon DS . (2004). J. Cell Physiol., 198, 31–39.

  • Palmer E, Ruegg C, Ferrando R, Pytela R and Sheppard D . (1993). J. Cell Biol., 123, 1289–1297.

  • Park HB, Golubovskaya V, Xu L, Yang X, Lee JW, Scully II S, Craven RJ and Cance WG . (2004). Biochem. J., 378, 559–567.

  • Pawlak G and Helfman DM . (2001). Curr. Opin. Genet. Dev., 11, 41–47.

  • Pawlak G and Helfman DM . (2002). Mol. Biol. Cell, 13, 336–347.

  • Pawlak G, McGarvey TW, Nguyen TB, Tomaszewski JE, Puthiyaveettil R, Malkowicz SB and Helfman DM . (2004). Int. J. Cancer, 110, 368–373.

  • Plath T, Detjen K, Welzel M, von Marschall Z, Murphy D, Schirner M, Wiedenmann B and Rosewicz S . (2000). J. Cell Biol., 150, 1467–1478.

  • Prasad GL, Fuldner RA and Cooper HL . (1993). Proc. Natl. Acad. Sci. USA, 90, 7039–7043.

  • Prasad GL, Masuelli L, Raj MH and Harindranath N . (1999). Oncogene, 18, 2027–2031.

  • Prasad GL, Meissner PS, Sheer D and Cooper HL . (1991). Biochem. Biophys. Res. Commun., 177, 1068–1075.

  • Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T and Prasad GL . (2003). Oncogene, 22, 6194–6203.

  • Rocco JW and Sidransky D . (2001). Exp. Cell Res., 264, 42–55.

  • Rosen K, Coll ML, Li A and Filmus J . (2001). J. Biol. Chem., 276, 37273–37279.

  • Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B and Borner C . (1998). Nature, 391, 496–499.

  • Sahai E, Olson MF and Marshall CJ . (2001). EMBO J., 20, 755–766.

  • Schmeichel KL, Weaver VM and Bissell MJ . (1998). J. Mammary Gland Biol. Neoplasia, 3, 201–213.

  • Schoenwaelder SM and Burridge K . (1999). Curr. Opin. Cell Biol., 11, 274–286.

  • Schulze A, Lehmann K, Jefferies HB, McMahon M and Downward J . (2001). Genes Dev., 15, 981–994.

  • Schwartz MA . (1997). J. Cell Biol., 139, 575–578.

  • Shah V, Bharadwaj S, Kaibuchi K and Prasad GL . (2001). Oncogene, 20, 2112–2121.

  • Shekhar MP, Pauley R and Heppner G . (2003). Breast Cancer Res., 5, 130–135.

  • Strater J, Wedding U, Barth TF, Koretz K, Elsing C and Moller P . (1996). Gastroenterology, 110, 1776–1784.

  • Stupack DG and Cheresh DA . (2002). J. Cell Sci., 115, 3729–3738.

  • Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S and Hahn KM . (2004). J. Cell Biol., 165, 371–381.

  • Swan EA, Jasser SA, Holsinger FC, Doan D, Bucana C and Myers JN . (2003). Oral Oncol., 39, 648–655.

  • Valentijn AJ, Metcalfe AD, Kott J, Streuli CH and Gilmore AP . (2003). J. Cell Biol., 162, 599–612.

  • Valentijn AJ, Zouq N and Gilmore AP . (2004). Biochem. Soc. Trans., 32, 421–425.

  • White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U and Muller WJ . (2004). Cancer Cell, 6, 159–170.

  • Woodring PJ, Hunter T and Wang JY . (2001). J. Biol. Chem., 276, 27104–27110.

  • Woodring PJ, Litwack ED, O'Leary DD, Lucero GR, Wang JY and Hunter T . (2002). J. Cell Biol., 156, 879–892.

  • Zhong C, Kinch MS and Burridge K . (1997). Mol. Biol. Cell, 8, 2329–2344.

Download references

Acknowledgements

This research is supported by an award from the Intramural Research Support Committee and the Department of General Surgery to GLP. GLP acknowledges the support of the Breast cancer research program from the Department of Defense (DAMD-98-1-8162). RF acknowledges the support of Associazione Italiana per la Ricerca sul Cancro (AIRC) and Ministero della Salute-Italy. We thank Ken Grant for the help with confocal microscopy, Stewart Roten for flow cytometry and Jerryann Weddle for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G L Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharadwaj, S., Thanawala, R., Bon, G. et al. Resensitization of breast cancer cells to anoikis by Tropomyosin-1: role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24, 8291–8303 (2005). https://doi.org/10.1038/sj.onc.1208993

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208993

Keywords

This article is cited by

Search

Quick links