Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

RAS and TGF-β exert antagonistic effects on extracellular matrix gene expression and fibroblast transformation

Abstract

Ras, Raf, and Fos function as components in a signal transduction pathway that is constitutively active in many cancers. Many of the changes that underlie cell transformation arise through changes in gene expression. We have used gene expression profiling of 3T3 cells transformed by Ras, Raf, and Fos to define the common and distinct targets of transcriptional control by each of these oncogenes. In this analysis, the most strongly conserved feature of cell transformation at the transcriptional level is the transcriptional repression of genes that encode components of the extracellular matrix (ECM). TGF-β treatment of fibroblasts is known to increase production of ECM, suggesting that TGF-β might selectively reverse some of the gene expression changes that occur during cell transformation. Using gene expression profiling of the TGF-β response, we show that the ability of TGF-β to reverse the changes in gene expression brought about by cellular transformation is essentially confined to genes that encode components of the ECM and the cytoskeleton. This selective reversal of transformation-induced changes in gene expression is associated with partial reversal of many parameters of cell transformation. The results demonstrate a correlation between gene repression by the Ras/Raf/ERK signaling pathway, gene activation by the TGF-β signaling pathway, and the transformed phenotype in fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abe N, Watanabe T, Masaki T, Mori T, Sugiyama M, Uchimura H, Fujioka Y, Chiappetta G, Fusco A and Atomi Y . (2000). Cancer Res., 60, 3117–3122.

  • Akhurst RJ and Derynck R . (2001). Trends Cell Biol., 11, 44–51.

  • Bakin AV and Curran T . (1999). Science, 283, 387–390.

  • Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H and Helfman DM . (2004). Mol. Biol. Cell, 15, 4682–4694.

  • Derynck R, Akhurst RJ and Balmain A . (2001). Nat. Genet., 29, 117–129.

  • Derynck R and Zhang YE . (2003). Nature, 425, 577–584.

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH and Kern SE . (1996). Science, 271, 350–353.

  • Hess JL . (1998). Am. J. Clin. Pathol., 109, 251–261.

  • Hocevar BA, Brown TL and Howe PH . (1999). EMBO J., 18, 1345–1356.

  • Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM and Aaltonen LA . (1998). Science, 280, 1086–1088.

  • Johnson IM, Spence HJ, Winnie JN, McGarry L, Vass JK, Meagher L, Stapleton G and Ozanne BW . (2000). Oncogene, 19, 5348–5358.

  • Kazmierczak B, Meyer-Bolte K, Tran KH, Wockel W, Breightman I, Rosigkeit J, Bartnitzke S and Bullerdiek J . (1999). Genes Chromosomes Cancer, 26, 125–133.

  • Keeton MR, Curriden SA, van Zonneveld AJ and Loskutoff DJ . (1991). J. Biol. Chem., 266, 23048–23052.

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH and Der CJ . (1996). Mol. Cell. Biol., 16, 3923–3933.

  • Kretzschmar M, Doody J, Timokhina I and Massague J . (1999). Genes Dev., 13, 804–816.

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H and Downward J . (2000). Genes Dev., 14, 2610–2622.

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M and Willson JK . (1995). Science, 268, 1336–1338.

  • Marshall CJ . (1996). Curr. Opin. Cell Biol., 8, 197–204.

  • Massague J, Blain SW and Lo RS . (2000). Cell, 103, 295–309.

  • McGarry LC, Winnie JN and Ozanne BW . (2004). Oncogene, 23, 5284–5292.

  • Mechta-Grigoriou F, Gerald D and Yaniv M . (2001). Oncogene, 20, 2378–2389.

  • Moustakas A and Stournaras C . (1999). J. Cell Sci., 112, 1169–1179.

  • Ordway JM, Williams K and Curran T . (2004). Oncogene, 23, 3737–3748.

  • Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW and Vogelstein B . (1995). Cancer Res., 55, 5548–5550.

  • Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B and Velculescu VE . (2002). Nature, 418, 934.

  • Rangarajan A, Hong SJ, Gifford A and Weinberg RA . (2004). Cancer Cell, 6, 171–183.

  • Scott LA, Vass JK, Parkinson EK, Gillespie DA, Winnie JN and Ozanne BW . (2004). Mol. Cell. Biol., 24, 1540–1559.

  • Shi Y and Massague J . (2003). Cell, 113, 685–700.

  • Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL and Mak TW . (2000). J. Biol. Chem., 275, 2063–2070.

  • Sprowles A and Wisdom R . (2003). Oncogene, 22, 498–506.

  • Takagi Y, Koumara H, Futamura M, Aoki S, Yamaguchi K, Kida H, Tanemura H, Shimokawa K and Saji S . (1998). Br. J. Cancer, 78, 1152–1155.

  • Van Aelst L, Barr M, Marcus S, Polverino A and Wigler M . (1993). Proc. Natl. Acad. Sci. USA, 90, 6213–6217.

  • Verrecchia F, Chu ML and Mauviel A . (2001). J. Biol. Chem., 276, 17058–17062.

  • Vojtek AB, Hollenberg SM and Cooper JA . (1993). Cell, 74, 205–214.

  • Waterston RH, Linblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Ernes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC and, Lander ES ; Mouse Genome Sequencing Consortium. (2002). Nature, 420, 520–562.

  • Wisdom R . (1999). Exp. Cell. Res., 253, 180–185.

  • Wisdom R, Johnson R and Moore C . (1999). EMBO J., 18, 188–197.

  • Wood LJ, Maher JF, Bunton TE and Resar LM . (2000). Cancer Res., 60, 4256–4261.

  • Zhang Y, Feng XH and Derynck R . (1998). Nature, 394, 909–913.

Download references

Acknowledgements

This work was supported by NIH grant CA64118 to RW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Wisdom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisdom, R., Huynh, L., Hsia, D. et al. RAS and TGF-β exert antagonistic effects on extracellular matrix gene expression and fibroblast transformation. Oncogene 24, 7043–7054 (2005). https://doi.org/10.1038/sj.onc.1208870

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208870

Keywords

This article is cited by

Search

Quick links