Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Caspase-dependent processing activates the proapoptotic activity of deleted in breast cancer-1 during tumor necrosis factor-alpha-mediated death signaling

Abstract

Deleted in breast cancer-1 (DBC-1) was initially cloned from a homozygously deleted region in breast and other cancers on human chromosome 8p21, although no function is known for the protein product it encodes. We identified the generation of amino-terminally truncated versions of DBC-1 during tumor necrosis factor (TNF)-α-mediated apoptosis. Full-length 150 kDa DBC-1 underwent caspase-dependent processing during TNF-α-mediated death signaling, to produce p120 DBC-1 and p66 DBC-1 carboxy-terminal fragments. Endogenous DBC-1 localized to the nucleus in healthy cells, but localized to the cytoplasm during TNF-α-mediated apoptosis, consistent with the loss of the amino-terminus containing the nuclear localization signal. Overexpression of an amino-terminal truncated DBC-1, resembling p120 DBC-1, caused mitochondrial clustering, mitochondrial matrix condensation, and sensitized cells to TNF-α-mediated apoptosis. The carboxy-terminal coiled-coil domain of DBC-1 was responsible for the cytoplasmic and mitochondrial localization, and for the death-promoting activity of DBC-1. Thus, caspase-dependent processing of DBC-1 may act as a feed-forward mechanism to promote apoptosis and possibly also tumor suppression. DBC-1, like its homolog cell cycle and apoptosis regulatory protein-1 (CARP-1), may function in the regulation of apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adams JM . (2003). Genes Dev., 17, 2481–2495.

  • Aravind L and Koonin EV . (2000). Trends Biochem. Sci., 25, 112–114.

  • Baffa R, Santoro R, Bullrich F, Mandes B, Ishii H and Croce CM . (2000). Clin. Cancer Res., 6, 1372–1377.

  • Baud V and Karin M . (2001). Trends Cell Biol., 11, 372–377.

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan D . (2003). J. Cell Biol., 160, 189–200.

  • Chiu R, Novikov L, Mukherjee S and Shields D . (2002). J. Cell Biol., 159, 637–648.

  • Cryns V and Yuan J . (1998). Genes Dev., 12, 1551–1570.

  • Cuconati A and White E . (2002). Genes Dev., 16, 2465–2478.

  • Dai W, Li Y, Ouyang B, Pan H, Reissmann P, Li J, Wiest J, Stambrook P, Gluckman JL, Noffsinger A and Bejarano P . (2000). Genes Chromosomes Cancer, 27, 332–336.

  • Danial NN and Korsmeyer SJ . (2004). Cell, 116, 205–219.

  • Desagher S and Martinou JC . (2000). Trends Cell Biol., 10, 369–377.

  • De Vos K, Goossens V, Boone E, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W and Grooten J . (1998). J. Biol. Chem., 273, 9673–9680.

  • De Vos K, Severin F, Van Herreweghe F, Vancompernolle K, Goosens V, Hyman A and Grooten J . (2000). J. Cell Biol., 149, 1207–1214.

  • Dong JT . (2001). Cancer Metast. Rev., 20, 173–193.

  • Fischer U, Janicke RU and Schulze-Osthoff K . (2003). Cell Death Differ., 10, 76–100.

  • Fujiwara Y, Ohata H, Emi M, Okui K, Koyama K, Tsuchiya E, Nakajima T, Monden M, Mori T, Kurimasa A, Oshimura M and Nakamura Y . (1994). Genes Chromosomes Cancer, 10, 7–14.

  • Gohring F, Schwab BL, Nicotera P, Leist M and Fackelmayer FO . (1997). EMBO J., 16, 7361–7371.

  • Gottlieb E, Armour SM, Harris MH and Thompson CB . (2003). Cell Death Differ., 10, 709–717.

  • Hackenbrock CR . (1966). J. Cell Biol., 30, 269–297.

  • Hackenbrock CR . (1968). Proc. Natl. Acad. Sci. USA, 61, 598–605.

  • Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T, Welcsh P, King MC and Wigler MH . (2002). Proc. Natl. Acad. Sci. USA, 99, 13647–13652.

  • Han J, Sabbatini P, Perez D, Rao L, Modha D and White E . (1996). Genes Dev., 10, 461–477.

  • He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwock DG, Tindall DJ, Gelmann EP, Abate-Shen C and Carter KC . (1997). Genomics, 43, 69–77.

  • Igney FH and Krammer PH . (2002). Nat. Rev. Cancer, 2, 277–288.

  • Kahng YS, Lee YS, Kim BK, Park WS, Lee JY and Kang CS . (2003). J. Gastroenterol Hepatol., 18, 430–436.

  • Karbowski M and Youle RJ . (2003). Cell Death Differ., 10, 870–880.

  • Kim KW, Kim BJ, Chung CW, Jo DG, Kim IK, Song YH, Kwon YK, Woo HN and Jung YK . (2002). J. Cell Biochem., 85, 334–345.

  • Kipp M, Schwab BL, Przbylski M, Nicotera P and Fackelmayer FO . (2000). J. Biol. Chem., 275, 5031–5036.

  • Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M and Petersen I . (2002). Virchows arch., 440, 187–194.

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Ch K, McGarry TJ, Kirschne MW, Koths K, Kwiatkowski DJ and Williams LT . (1997). Science, 278, 294–298.

  • Kucharczak J, Simmons MJ, Fan Y and Gelinas C . (2003). Oncogene, 22, 8961–8982.

  • Kurimoto F, Gemma A, Hosoya Y, Seike M, Takenaka K, Uematsu K, Yoshimura A, Shibuya M and Kudoh S . (2001). Int. J. Mol. Med., 8, 89–93.

  • Lai J, Flanagan J, Philips WA, Chenevix-Trench G and Arnold J . (2003). Br. J. Cancer, 88, 270–276.

  • Lassus H, Laitinen MP, Anttonen M, Heikinheimo M, Aaltonen LA, Ritvos O and Butzow R . (2001). Lab. Invest., 81, 517–526.

  • Legros F, Lombes A, Frachon P and Rojo M . (2002). Mol. Biol. Cell, 13, 4343–4354.

  • Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB and Hockenbery DM . (1997). J. Cell Biol., 138, 449–469.

  • Martinez-Climent JA, Vizcarra E, Sanchez D, Blesa D, Marugan IIB, Sole F, Rubio-Moscardo F, Terol MJ, Climent J, Sarsotti E, Tormo M, Andreu E, Salido M, Ruiz MA, Prosper F, Siebert R, Dyer MJ and Garcia-Conde J . (2001). Blood, 98, 3479–3482.

  • Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S and Martinou JC . (1999). J. Cell Biol., 144, 883–889.

  • Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, Peretz T, Mandelboim O and Ben-Yehuda D . (2003). Cancer Res., 63, 6340–6349.

  • Nagata S . (1999). Annu. Rev. Genet., 33, 29–55.

  • Perez D and White E . (2000). Mol. Cell, 6, 53–63.

  • Plaumann M, Seitz S, Frege R, Estevez-Schwarz L and Scherneck S . (2003). J. Cancer Res. Clin. Oncol., 129, 349–354.

  • Rishi AK, Zhang B, Boyanapalli M, Wali A, Mohammad RM, Yu Y, Fontana JA, Hatfield JS, Dawson MI, Majumdar AP and Reichert U . (2003). J. Biol. Chem., 278, 33422–33435.

  • Rojo M, Legros F, Chateau D and Lombes A . (2002). J. Cell Sci., 115, 1663–1674.

  • Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y and Tsujimoto Y . (1999). Nature, 401, 168–173.

  • Santel A and Fuller MT . (2000). J. Cell Sci., 114, 867–874.

  • Scorrano L, Ashiya MKB, Weiler S, Oakes SA, Mannella CA and Korsmeyer SJ . (2002). Dev. Cell, 2, 55–67.

  • Sundararajan R, Cuconati A, Nelson D and White E . (2001). J. Biol. Chem., 276, 45120–45127.

  • Sundararajan R and White E . (2001). J. Virol., 75, 7506–7516.

  • Sunwoo JB, Holt MS, Radford DM, Deeker C and Scholnick SB . (1996). Genes Chromosomes Cancer, 16, 164–169.

  • Swalwell JI, Vocke CD, Yang Y and Walker . (2002). Genes Chromosomes Cancer, 33, 201–205.

  • Thomas WD, Zhang XD, Franco AW, Nguyen T and Hersey P . (2000). J. Immunol., 165, 5612–5620.

  • Thor AD, Eng C, Devries S, Paterakos M, Watkin WG, Edgerton S, Moore DH, Etzell J and Waldman FM . (2002). Hum. Pathol., 33, 628–631.

  • White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI and Gooding L . (1992). Mol. Cell. Biol., 12, 2570–2580.

  • Xu Z, Liang L, Wang H, Li T and Zhao M . (2003). Biochem. Biophys. Res. Commun., 311, 1057–1066.

  • Zamzami N and Kroemer G . (1999). Nature, 401, 127–128.

  • Zhuang J, Dinsdale D and Cohen GM . (1998). Cell Death Differ., 5, 953–962.

Download references

Acknowledgements

We thank Dr Kyriakos Economides for help with confocal microscopy. We also thank Dr Deirdre Nelson for critical reading, and Thomasina Sharkey for assistance with preparation of the manuscript. This work has been supported by a grant from the National Institutes of Health (CA53370) to EW and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundararajan, R., Chen, G., Mukherjee, C. et al. Caspase-dependent processing activates the proapoptotic activity of deleted in breast cancer-1 during tumor necrosis factor-alpha-mediated death signaling. Oncogene 24, 4908–4920 (2005). https://doi.org/10.1038/sj.onc.1208681

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208681

Keywords

This article is cited by

Search

Quick links