Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Novel Rap1 dominant-negative mutants interfere selectively with C3G and Epac

Abstract

Rap1 is a Ras-related GTPase that is principally involved in integrin- and E-cadherin-mediated adhesion. Rap1 is transiently activated in response to many incoming signals via a large family of guanine nucleotide exchange factors (GEFs). The lack of potent Rap1 dominant-negative mutants has limited our ability to decipher Rap1-dependent pathways; we have therefore developed a procedure to generate such mutants consisting in the oligonucleotide-mediated mutagenesis of residues 14–19, selection of mutants presenting an enhanced interaction with Epac2 by yeast two-hybrid screening and counter-screening for mutants still interacting with Rap effectors. In detail analysis of their interaction capacity with various Rap-GEFs in the yeast two-hybrid system revealed that mutants of residues 15 and 16 interacted with Epacs, C3G and CalDAG-GEFI, whereas mutants of position 17 had selectively lost their ability to bind CalDAG-GEFI as well as, for some, C3G. In cellular models where Rap1 is activated via endogenous GEFs, the Rap1[S17A] mutant inhibits both the cAMP–Epac and EGF–C3G pathways, whereas Rap1[G15D] selectively interferes with the latter. Finally, Rap1[S17A] is able to act as a bona fide dominant-negative mutant in vivo since it phenocopies the eye-reducing and lethal effects of D-Rap1 deficiency in Drosophila, effects that are overcome by the overexpression of D-Epac or D-Rap1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Asha H, de Ruiter ND, Wang MG and Hariharan IK . (1999). EMBO J., 18, 605–615.

  • Bar-Sagi D and Hall A . (2000). Cell, 103, 227–238.

  • Beranger F, Aresta S, de Gunzburg J and Camonis J . (1997). Nucleic Acids Res., 25, 2035–2036.

  • Beranger F, Goud B, Tavitian A and de Gunzburg J . (1991). Proc. Natl. Acad. Sci. USA, 88, 1606–1610.

  • Biou V and Cherfils J . (2004). Biochemistry, 43, 6833–6840.

  • Bivona TG, Wiener HH, Ahearn IM, Silletti J, Chiu VK and Philips MR . (2004). J. Cell Biol., 164, 461–470.

  • Boettner B, Govek EE, Cross J and Van Aelst L . (2000). Proc. Natl. Acad. Sci. USA, 97, 9064–9069.

  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D and Kuriyan J . (1998). Nature, 394, 337–343.

  • Bos JL . (2003). Nat. Rev. Mol. Cell Biol., 4, 733–738.

  • Bos JL, de Rooij J and Reedquist KA . (2001). Nat. Rev. Mol. Cell Biol., 2, 369–377.

  • Brand AH and Perrimon N . (1993). Development, 118, 401–415.

  • Chen SY, Huff SY, Lai CC, Der CJ and Powers S . (1994). Oncogene, 9, 2691–2698.

  • Cherfils J, Menetrey J, Le Bras G, Janoueix-Lerosey I, de Gunzburg J, Garel JR and Auzat I . (1997). EMBO J., 16, 5582–5591.

  • Clyde-Smith J, Silins G, Gartside M, Grimmond S, Etheridge M, Apolloni A, Hayward N and Hancock JF . (2000). J. Biol. Chem., 275, 32260–32267.

  • de Rooij J, Boenink NM, van Triest M, Cool RH, Wittinghofer A and Bos JL . (1999). J. Biol. Chem., 274, 38125–38130.

  • de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S, Nishimura S, Miura K, Ohtsuka E and Kim SH . (1988). Science, 239, 888–893.

  • Farnsworth CL and Feig LA . (1991). Mol. Cell. Biol., 11, 4822–4829.

  • Feig LA . (1999). Nat. Cell Biol., 1, E25–E27.

  • Feig LA and Cooper GM . (1988). Mol. Cell. Biol., 8, 3235–3243.

  • Ferguson KM and Higashijima T . (1991). Methods Enzymol., 195, 188–192.

  • Franke B, Akkerman JW and Bos JL . (1997). EMBO J., 16, 252–259.

  • Gao X, Satoh T, Liao Y, Song C, Hu CD, Kariya Ki K and Kataoka T . (2001). J. Biol. Chem., 276, 42219–42225.

  • Hancock JF, Cadwallader K, Paterson H and Marshall CJ . (1991). EMBO J., 10, 4033–4039.

  • Hariharan IK, Carthew RW and Rubin GM . (1991). Cell, 67, 717–722.

  • Hay BA, Maile R and Rubin GM . (1997). Proc. Natl. Acad. Sci. USA, 94, 5195–5200.

  • Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga VM, Birchmeier W and Fujita Y . (2004). Mol. Cell. Biol., 24, 6690–6700.

  • Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, Mochizuki N and Matsuda M . (1999). J. Biol. Chem., 274, 14376–14381.

  • Ishimaru S, Williams R, Clark E, Hanafusa H and Gaul U . (1999). EMBO J., 18, 145–155.

  • Jung V, Wei W, Ballester R, Camonis J, Mi S, Van Aelst L, Wigler M and Broek D . (1994). Mol. Cell. Biol., 14, 3707–3718.

  • Karess RE and Rubin GM . (1984). Cell, 38, 135–146.

  • Karim FD and Rubin GM . (1998). Development, 125, 1–9.

  • Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, Inaba K and Kinashi T . (2004). Nat. Immunol., 5, 1045–1051.

  • Kawasaki H, Springett GM, Toki S, Canales JJ, Harlan P, Blumenstiel JP, Chen EJ, Bany IA, Mochizuki N, Ashbacher A, Matsuda M, Housman DE and Graybiel AM . (1998). Proc. Natl. Acad. Sci. USA, 95, 13278–13283.

  • Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y and Noda M . (1989). Cell, 56, 77–84.

  • Knox AL and Brown NH . (2002). Science, 295, 1285–1288.

  • Lafuente EM, van Puijenbroek AA, Krause M, Carman CV, Freeman GJ, Berezovskaya A, Constantine E, Springer TA, Gertler FB and Boussiotis VA . (2004). Dev. Cell, 7, 585–595.

  • Lai CC, Boguski M, Broek D and Powers S . (1993). Mol. Cell. Biol., 13, 1345–1352.

  • Liao Y, Kariya K, Hu CD, Shibatohge M, Goshima M, Okada T, Watari Y, Gao X, Jin TG, Yamawaki-Kataoka Y and Kataoka T . (1999). J. Biol. Chem., 274, 37815–37820.

  • Liao Y, Satoh T, Gao X, Jin TG, Hu CD and Kataoka T . (2001). J. Biol. Chem., 276, 28478–28483.

  • Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R and Lezoualc'h F . (2003). Nat. Cell Biol., 5, 633–639.

  • Mirey G, Balakireva M, L'Hoste S, Rosse C, Voegeling S and Camonis J . (2003). Mol. Cell. Biol., 23, 1112–1124.

  • Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A and Matsuda M . (2001). Nature, 411, 1065–1068.

  • Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL and de Gunzburg J . (1999). J. Biol. Chem., 274, 8737–8745.

  • Nassar N, Horn G, Herrmann C, Scherer A, McCormick F and Wittinghofer A . (1995). Nature, 375, 554–560.

  • Ohba Y, Kurokawa K and Matsuda M . (2003). EMBO J., 22, 859–869.

  • Papin C, Denouel A, Calothy G and Eychene A . (1996). Oncogene, 12, 2213–2221.

  • Pizon V, Chardin P, Lerosey I, Olofsson B and Tavitian A . (1988). Oncogene, 3, 201–204.

  • Powers S, O'Neill K and Wigler M . (1989). Mol. Cell. Biol., 9, 390–395.

  • Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG and Bos JL . (2004). J. Biol. Chem., 279, 35127–35132.

  • Reedquist KA, Ross E, Koop EA, Wolthuis RM, Zwartkruis FJ, van Kooyk Y, Salmon M, Buckley CD and Bos JL . (2000). J. Cell Biol., 148, 1151–1158.

  • Rubin GM, Kidwell MG and Bingham PM . (1982). Cell, 29, 987–994.

  • Schweighoffer F, Cai H, Chevallier-Multon MC, Fath I, Cooper G and Tocque B . (1993). Mol. Cell. Biol., 13, 39–43.

  • Shi S, Noda M and Kitayama H . (2004). Oncogene, 23, 8711–8719.

  • Sigal IS, Gibbs JB, D'Alonzo JS, Temeles GL, Wolanski BS, Socher SH and Scolnick EM . (1986). Proc. Natl. Acad. Sci. USA, 83, 952–956.

  • Transy C and Legrain P . (1995). Mol. Biol. Rep., 21, 119–127.

  • Traver S, Bidot C, Spassky N, Baltauss T, De Tand MF, Thomas JL, Zalc B, Janoueix-Lerosey I and Gunzburg JD . (2000). Biochem. J., 350 (Part 1), 19–29.

  • Van Aelst L, Barr M, Marcus S, Polverino A and Wigler M . (1993). Proc. Natl. Acad. Sci. USA, 90, 6213–6217.

  • van den Berghe N, Cool RH, Horn G and Wittinghofer A . (1997). Oncogene, 15, 845–850.

  • Vossler MR, Yao H, York RD, Pan MG, Rim CS and Stork PJ . (1997). Cell, 89, 73–82.

Download references

Acknowledgements

We are indebted to Drs J Flanders and J Hancock for plasmids, to Pr M Matsuda for C3G expression vectors and related antibodies, to Drs U Gaul, E Hafen and I Hariharan for Drosophila constructs and strains, to Dr F Lezoualc'h for the CHO-5HT4b cell line, and to Dr M Balakireva for Drosophila lines as well as critical reading of the manuscript. This work was funded in part by a grant from the Association pour la Recherche contre le Cancer. A Dupuy and S L'Hoste were successively supported by doctoral fellowships from the Ministère de la Recherche and the Association pour la Recherche contre le Cancer. G Gaudriault was the recipient of a postdoctoral fellowship from the Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean de Gunzburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupuy, A., L'Hoste, S., Cherfils, J. et al. Novel Rap1 dominant-negative mutants interfere selectively with C3G and Epac. Oncogene 24, 4509–4520 (2005). https://doi.org/10.1038/sj.onc.1208647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208647

Keywords

This article is cited by

Search

Quick links