Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

In my end is my beginning: control of end resection and DSBR pathway ‘choice’ by cyclin-dependent kinases

Abstract

The genome is constantly subjected to chemical alterations that have the potential to cause genetic mutation, chromosomal rearrangements and, in the case of multicellular organisms, cancer. Particular vulnerability exists during DNA replication, when the two DNA strands of a chromosome separate to form templates for the synthesis of sister chromatids. Attempted replication across a damaged or nicked DNA template can result in the formation of a double-strand break (DSB), arguably the most dangerous of DNA lesions. DSBs can also arise directly at any cell cycle stage following exposure to ionizing radiation or radiomimetic agents. To combat these recurrent threats of genomic instability, numerous distinct enzyme systems have evolved that sense DNA damage and coordinate its repair. Part of this coordination involves the activation of signal transduction cascades that target repair proteins, trigger DNA damage-dependent cell cycle checkpoints and profoundly affect chromatin neighboring a DSB. Here, we discuss current models of how lesion processing itself helps to coordinate these signals in dividing cells. Recent evidence in yeast of a role for cyclin-dependent kinases in DNA end resection suggests a possible solution to the long-standing puzzle of how DSBR pathway ‘choice’ is regulated through the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abraham RT . (2004). DNA Repair (Amst.), 3, 883–887.

  • Anderson DG and Kowalczykowski SC . (1997). Genes Dev., 11, 571–581.

  • Bassing CH, Swat W and Alt FW . (2002). Cell, 109 (Suppl), S45–S55.

  • Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J and Sancar A . (2003). Proc. Natl. Acad. Sci. USA, 100, 1633–1638.

  • Bessho T and Sancar A . (2000). J. Biol. Chem., 275, 7451–7454.

  • Chen Y and Sanchez Y . (2004). DNA Repair (Amst.), 3, 1025–1032.

  • Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ and Marians KJ . (2000). Nature, 404, 37–41.

  • Critchlow SE and Jackson SP . (1998). Trends Biochem. Sci., 23, 394–398.

  • de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R and Wyman C . (2001). Mol. Cell, 8, 1129–1135.

  • Griffith JD, Lindsey-Boltz LA and Sancar A . (2002). J. Biol. Chem., 277, 15233–15236.

  • Haber JE . (1999). Nature, 398, 665–667.

  • Hekmat-Nejad M, You Z, Yee MC, Newport JW and Cimprich KA . (2000). Curr. Biol., 10, 1565–1573.

  • Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE and Foiani M . (2004). Nature, 431, 1011–1017.

  • Kowalczykowski SC . (2000). Trends Biochem. Sci., 25, 156–165.

  • Krogh BO and Symington LS . (2004). Annu. Rev. Genet., 38, 233–271.

  • Kumagai A, Kim SM and Dunphy WG . (2004). J. Biol. Chem., 279, 49599–49608.

  • Lee GS, Neiditch MB, Salus SS and Roth DB . (2004). Cell, 117, 171–184.

  • Lee J, Kumagai A and Dunphy WG . (2003). Mol. Cell, 11, 329–340.

  • Lin SY, Li K, Stewart GS and Elledge SJ . (2004). Proc. Natl. Acad. Sci. USA, 101, 6484–6489.

  • Lisby M, Barlow JH, Burgess RC and Rothstein R . (2004). Cell, 118, 699–713.

  • Liskay RM, Letsou A and Stachelek JL . (1987). Genetics, 115, 161–167.

  • Llorente B and Symington LS . (2004). Mol. Cell. Biol., 24, 9682–9694.

  • Lomonosov M, Anand S, Sangrithi M, Davies R and Venkitaraman AR . (2003). Genes Dev., 17, 3017–3022.

  • Mirzoeva OK and Petrini JH . (2003). Mol. Cancer Res., 1, 207–218.

  • Osborn AJ, Elledge SJ and Zou L . (2002). Trends Cell Biol., 12, 509–516.

  • Parrilla-Castellar ER, Arlander SJ and Karnitz L . (2004). DNA Repair (Amst.), 3, 1009–1014.

  • Parrilla-Castellar ER and Karnitz LM . (2003). J. Biol. Chem., 278, 45507–45511.

  • Paulovich AG, Toczyski DP and Hartwell LH . (1997). Cell, 88, 315–321.

  • Ristic D, Modesti M, Kanaar R and Wyman C . (2003). Nucleic Acids Res., 31, 5229–5237.

  • Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB and Karnitz LM . (2003). J. Biol. Chem., 278, 24428–24437.

  • Rubnitz J and Subramani S . (1984). Mol. Cell. Biol., 4, 2253–2258.

  • Scully R and Livingston DM . (2000). Nature, 408, 429–432.

  • Seigneur M, Bidnenko V, Ehrlich SD and Michel B . (1998). Cell, 95, 419–430.

  • Shechter D, Costanzo V and Gautier J . (2004). DNA Repair (Amst.), 3, 901–908.

  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE and Lichten M . (2004). Curr. Biol., 14, 1703–1711.

  • Sogo JM, Lopes M and Foiani M . (2002). Science, 297, 599–602.

  • Stracker TH, Theunissen JW, Morales M and Petrini JH . (2004). DNA Repair (Amst.), 3, 845–854.

  • Van Dyck E, Stasiak AZ, Stasiak A and West SC . (2001). EMBO Rep., 2, 905–909.

  • Wyman C, Ristic D and Kanaar R . (2004). DNA Repair (Amst.), 3, 827–833.

  • Zou L, Cortez D and Elledge SJ . (2002). Genes Dev., 16, 198–208.

  • Zou L and Elledge SJ . (2003). Science, 300, 1542–1548.

  • Zou L, Liu D and Elledge SJ . (2003). Proc. Natl. Acad. Sci. USA, 100, 13827–13832.

Download references

Acknowledgements

We thank members of the Scully lab for helpful discussions. This work was supported by awards R01 CA95175, ACS grant RSG-04-198-01-MGO and a Pew Scholars Award (to RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Scully.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scully, R., Xie, A. In my end is my beginning: control of end resection and DSBR pathway ‘choice’ by cyclin-dependent kinases. Oncogene 24, 2871–2876 (2005). https://doi.org/10.1038/sj.onc.1208609

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208609

Keywords

This article is cited by

Search

Quick links