Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Predisposition to mouse thymic lymphomas in response to ionizing radiation depends on variant alleles encoding metal-responsive transcription factor-1 (Mtf-1)

Abstract

Genetic predisposition to cancers is significant to public health because a high proportion of cancers probably arise in a susceptible human subpopulation. Using a mouse model of γ-ray-induced thymic lymphomas, we performed linkage analysis and haplotype mapping that suggested Mtf-1, metal-responsive transcription factor-1 (Mtf-1), as a candidate lymphoma susceptibility gene. Sequence analysis revealed a polymorphism of Mtf-1 that alters the corresponding amino acid at position 424 in the proline-rich domain from a serine in susceptibility strains to proline in resistant strains. The transcriptional activity of Mtf-1 encoding serine and proline was compared by transfecting the DNA to Mtf-1-null cells, and the change to proline conferred a higher metal responsiveness in transfections. Furthermore, the resistant congenic strains possessing the Mtf-1 allele of proline type exhibited higher radiation inducibility of target genes than susceptible background strains having the Mtf-1 allele of serine type. Since products of the targets such as metallothionein are able to suppress cellular stresses generated by irradiation, these results suggest that highly inducible strains having Mtf-1 of proline type are refractory to radiation effects and hence are resistant to lymphoma development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adini A, Kornaga T, Firoozbakht F and Benjamin LE . (2002). Cancer Res., 62, 2749–2752.

  • Andrews GK . (2000). Biochem. Pharmacol., 59, 95–104.

  • Andrews GK, Lee DK, Ravindra R, Lichtlen P, Sirito M, Sawadogo M and Schaffner W . (2001). EMBO J., 20, 1114–1122.

  • Angel JM and Richie ER . (2002). Mol. Carcinogen., 33, 105–112.

  • Balmain A . (2002). Cell, 108, 145–152.

  • Balmain A, Gray J and Ponder B . (2003). Nat. Genet., 33, 238–244.

  • Berrington de Gonzalez A and Darby S . (2004). Lancet, 363, 345–351.

  • Cormier RT, Hong KH, Halberg RB, Hawkins TL, Richardson P, Mulherkar R, Dove WF and Lander ES . (1997). Nat. Genet., 17, 88–91.

  • Criswell T, Leskov K, Miyamoto S, Luo G and Boothman DA . (2003). Oncogene, 22, 5813–5827.

  • Darvasi A . (1998). Nat. Genet., 18, 19–24.

  • Demant P . (1992). Cancer Biol., 3, 159–166.

  • Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, MacCarthy-Morrogh L, Ponder BA, Nagase H, Burn J, Ball S, Almeida M, Linardopoulos S and Balmain A . (2003). Nat. Genet., 34, 403–412.

  • Ghebranious N and Donehower LA . (1998). Oncogene, 17, 3385–3400.

  • Gould KA and Dove WF . (1998). Exp. Lung Res., 24, 437–453.

  • Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A and Schaffner W . (1998). EMBO J., 17, 2846–2854.

  • Hellsten E, Evans JP, Bernard DJ, Janne PA and Nussbaum RL . (2001). Dev. Biol., 240, 641–653.

  • Kammann M, Laufs J and Gronenborn B . (1989). Nucleic Acids Res., 17, 5404.

  • Koropatnick J, Leibbrandt M and Chrian MG . (1989). Radiat. Res., 119, 356–365.

  • Lander E and Kruglyak L . (1995). Nat. Genet., 11, 241–247.

  • Langmade SJ, Ravindra R, Daniels PJ and Andrews GK . (2000). J. Biol. Chem., 275, 34803–34809.

  • Lichtlen P and Schaffner W . (2001). Bioessays, 23, 1010–1017.

  • Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R and Schaffner W . (2001). Nucleic Acids Res., 29, 1514–1523.

  • Little JB . (2000). Carcinogenesis, 21, 397–404.

  • Macphee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD and Buchberg AM . (1995). Cell, 81, 957–966.

  • Matsumoto Y, Kosugi S, Shinbo T, Chou D, Ohashi M, Wakabayashi Y, Sakai K, Okumoto M, Mori N, Aizawa S, Niwa O and Kominami R . (1998). Oncogene, 16, 2747–2754.

  • Nadeau JH . (2001). Nat. Rev. Genet., 2, 165–174.

  • Okano H, Saito Y, Miyazawa T, Shinbo T, Chou D, Kosugi S, Takahashi Y, Odani S, Niwa O and Kominami R . (1999). Oncogene, 18, 6677–6683.

  • Ponder BAJ . (2001). Nature, 411, 336–341.

  • Radtke F, Georgiev O, Muller HP, Brugnera E and Schaffner W . (1995). Nucleic Acids Res., 23, 2277–2286.

  • Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z and Schaffner W . (1993). EMBO J., 12, 1355–1362.

  • Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikos T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ and Demant P . (2002). Nat. Genet., 31, 295–300.

  • Saito Y, Ochiai Y, Kodama Y, Tamura Y, Togashi T, Kosugi-Okano H, Miyazawa T, Wakabayashi Y, Hatakeyama K, Wakana S, Niwa O and Kominami R . (2001). Oncogene, 20, 5243–5247.

  • Sato H, Tamura Y, Ochiai Y, Kodama Y, Hatakeyama K, Niwa O and Kominami R . (2003). Cancer Sci., 94, 668–671.

  • Saydam N, Georgiev O, Nakano MY, Greber UF and Schaffner W . (2001). J. Biol. Chem., 276, 25487–25495.

  • Smirnova IV, Bittel DC, Ravindra R, Jiang H and Andrews GK . (2000). J. Biol. Chem., 275, 9377–9384.

  • Tamai KT, Gralla EB, Ellerby LM, Valentine JS and Thiele DJ . (1993). Proc. Natl. Acad. Sci. USA, 90, 8013–8017.

  • Wade CM, Kulbokas III EJ, Kirby AW, Zody MC, Mullikin JC, Lander ES, Lindblad-Toh K and Daly MJ . (2002). Nature, 420, 574–578.

  • Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T, Mishima Y, Niwa O and Kominami R . (2003a). Biochem. Biophys. Res. Commun., 301, 598–603.

  • Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S and Kominami R . (2003b). Nat. Immunol., 4, 533–539.

  • Wang Y, Wimmer U, Lichtlen P, Inderbitzin D, Stieger B, Meier PJ, Hunziker L, Stallmach T, Forrer R, Rülicke T, Georgiev O and Schaffner W . (2004). FASEB J., 18, 1071–1079.

  • Wright AF and Hastie ND . (2001). Genome Biol., 2, COMMENT2007.1–COMMENT2007.8.

  • Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR and Haber DA . (2003). Curr. Biol., 13, 1625–1629.

Download references

Acknowledgements

We thank Dr George Hausmann for critical reading of the manuscript. This work was supported by grants-in-aid of Second Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kominami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, Y., Maruyama, M., Mishima, Y. et al. Predisposition to mouse thymic lymphomas in response to ionizing radiation depends on variant alleles encoding metal-responsive transcription factor-1 (Mtf-1). Oncogene 24, 399–406 (2005). https://doi.org/10.1038/sj.onc.1208197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208197

Keywords

Search

Quick links