Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation

Abstract

Transforming growth factor-β (TGF-β) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF-β production and lack of TGF-β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF-β-mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF-β/Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF-β, has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF-β/Smad3-mediated apoptosis, only HCV core represses TGF-β-induced G1 phase arrest through downregulation of the TGF-β-induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF-β. In conclusion, HCV viral proteins interact with the TGF-β signaling mediator Smad3 and differentially impair TGF-β/Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF-β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abe M, Harpel JG, Metz CN, Nunes L, Loskutoff DJ and Rigkin DB . (1994). Anal. Biochem., 216, 276–284.

  • Blight KJ, Kolykhalov AA and Rice CM . (2000). Science, 290, 1972–1974.

  • Chen CM, You LR, Hwang LH and Lee YHW . (1997). J. Virol., 71, 9417–9426.

  • Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR and Lee YHW . (2003). J. Biol. Chem., 278, 591–607.

  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF . (1995). Proc. Natl. Acad. Sci. USA, 92, 5545–5549.

  • De Bleser PJ, Niki T, Rogiers V and Geerts A . (1997). J. Hepatol., 26, 886–893.

  • De Francesco R and Steinkuhler C . (2000). Curr. Top. Microbiol. Immunol., 242, 149–169.

  • Dennler S, Itoh S, Vivien D, Dijke PT, Huet S and Gauthier JM . (1998). EMBO J., 17, 3091–3100.

  • Derynck R, Akhurst RJ and Balmain A . (2001). Nat. Genet., 29, 117–129.

  • Dey A, Atcha IA and Bagchi S . (1997). Virology, 228, 190–199.

  • Dubordeau M, Miyamura T, Matsuura Y, Alric L, Pipy B and Rousseau D . (2002). J. Hepatol., 37, 486–492.

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Fujita T, Ishido S, Muramatsu S, Itoh M and Hotta H . (1996). Biochem. Biophys. Res. Commun., 229, 825–831.

  • Graham FL and van der Eb AJ . (1973). Virology, 52, 456–467.

  • Hata A, Lo RS, Wotton D, Lagna G and Massague J . (1997). Nature, 388, 82–87.

  • Ito N, Kawata S, Tamura S, Takaishi K, Shirai Y, Kiso S, Yabuuchi I, Matsuda Y, Nishioka M and Tarui S . (1991). Cancer Res., 51, 4080–4083.

  • Jang CW, Chen CH, Chen CC, Chen JY, Su YH and Chen RH . (2002). Nat. Cell Biol., 4, 51–58.

  • Jayaraman L and Massague J . (2000). J. Biol. Chem., 275, 40710–40717.

  • Kim DH, Chang JH, Lee KH, Lee HY and Kim SJ . (1996). J. Biol. Chem., 272, 688–694.

  • Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM and Rice CM . (1997). Science, 277, 570–574.

  • Kwong AD, Kim JL and Lin C . (2000). Curr. Top. Microbiol. Immunol., 242, 171–196.

  • Lai MM and Ware CF . (2000). Curr. Top. Microbiol. Immunol., 242, 117–134.

  • Lauer GM and Walker BD . (2001). N. Engl. J. Med., 345, 41–52.

  • Lee DK, Kim BC, Brady JN, Jeang KT and Kim SJ . (2002a). J. Biol. Chem., 277, 33766–33775.

  • Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ and Kim SJ . (2002b). J. Biol. Chem., 277, 38557–38564.

  • Lee DK, Park SH, Yi Y, Choi SG, Lee C, Parks WT, Cho H, de Caestecker MP, Shaul Y, Roberts AB and Kim SJ . (2001). Genes Dev., 15, 455–466.

  • Lee MN, Jung EY, Kwun HJ, Jun HK, Yu DY, Choi YH and Jang KL . (2002c). J. Gen. Virol., 83, 2145–2151.

  • Massague J . (2000). Nat. Rev. Mol. Cell. Biol., 1, 169–178.

  • Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K, Yamashiki N, Seki T, Saito H, Nishizawa M, Fujisawa J and Inoue K . (2000). Cancer Res., 60, 1394–1402.

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T and Koike K . (1998). Nat. Med., 4, 1065–1067.

  • Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T and Koike K . (1997). J. Gen. Virol., 78, 1527–1531.

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K and ten Dijke P . (1997). EMBO J., 16, 5353–5362.

  • Nishihara A, Hanai JI, Imamura T, Miyazono K and Kawabata M . (1999). J. Biol. Chem., 274, 28716–28723.

  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W and Schulte-Hermann R . (1992). Proc. Natl. Acad. Sci. USA, 89, 5408–5412.

  • Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D and Moustakas A . (2000). J. Biol. Chem., 275, 29244–29256.

  • Prokova V, Mosialos G and Karassis D . (2001). J. Biol. Chem., 277, 9342–9350.

  • Ray RB, Steele R, Meyer K and Ray R . (1998). Gene, 208, 331–336.

  • Ray S, Broor SL, Vaishnav Y, Sarkar C, Girish R, Dar L, Seth P and Broor S . (2003). J. Gastroenterol. Hepatol., 18, 393–403.

  • Reed KE and Rice CM . (2000). Curr. Top. Microbiol. Immunol., 242, 55–84.

  • Sakamuro D, Furukawa T and Takegami T . (1995). J. Virol., 69, 3893–3896.

  • Seeff LB . (2002). Hepatology, 36, S35–S46.

  • Shih CM, Lo SJ, Miyamura T, Chen SY and Lee YHW . (1993). J. Virol., 67, 5823–5832.

  • Shih WL, Kuo ML, Chuang SE, Cheng AL and Doong SL . (2000). J. Biol. Chem., 275, 25858–25864.

  • Tellinghuisen TL and Rice CM . (2002). Curr. Opin. Microbiol., 5, 419–427.

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF and Massague J . (1992). Cell, 71, 1003–1014.

  • You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH and Lee YHW . (1999). J. Virol., 73, 2841–2853.

  • Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, Kunin M, Berdichevsky Y, Benhar I and Tur-Kaspa R . (2001). J. Viral Hepatitis., 8, 96–102.

  • Zhang Y, Feng XH and Derynck R . (1998). Nature, 394, 909–913.

  • Zhang Y, Feng XH, We RY and Derynck R . (1996). Nature, 383, 168–172.

Download references

Acknowledgements

We thank CM Rice and Apath (St Louis, MO, USA) for generously providing the Ava.5 cells and p90/HCVFLlongpU plasmid. We also thank L-H Hwang, R-H Chen, C-K Chou, K-H Lan, K Tokushige and K Miyazono for providing plasmids used in this study. We are grateful to R Kirby for critical reading and comments on this manuscript. This work was supported by the following grants to Y-HW Lee: NSC 89-2315-B-010-006-MH, NSC 89-2320-B-010-121, NSC 90-2320-B-010-077, NSC 91-2320-B-010-040, and NSC 92-2320-B-010-064 from National Science Council; and in part by grants NHRI-EX91-9002BL, NHRI-EX92-9002BL, and NHRI-EX93-9002BL from the National Health Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hwa Wu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, PL., Chang, MH., Chao, CH. et al. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation. Oncogene 23, 7821–7838 (2004). https://doi.org/10.1038/sj.onc.1208066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208066

Keywords

This article is cited by

Search

Quick links