Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action

Abstract

Choline kinase (ChoK, E.C. 2.7.1.32) is involved in the synthesis of phosphatidylcholine (PC), and has been found to be increased in human tumors and tumor-derived cell lines. Furthermore, ChoK inhibitors have been reported to show a potent and selective antitumoral activity both in vitro and in vivo. Here, we provide the basis for a rational understanding of the antitumoral activity of ChoK inhibitors. In normal cells, blockage of de novo phosphorylcholine (PCho) synthesis by inhibition of ChoK promotes the dephosphorylation of pRb, resulting in a reversible cell cycle arrest at G0/G1 phase. In contrast, ChoK inhibition in tumor cells renders cells unable to arrest in G0/G1 as manifested by a lack of pRb dephosphorylation. Furthermore, tumor cells specifically suffer a drastic wobble in the metabolism of main membrane lipids PC and sphingomyelin (SM). This lipid disruption results in the enlargement of the intracellular levels of ceramides. As a consequence, normal cells remain unaffected, but tumor cells are promoted to apoptosis. Thus, we provide in this study the rationale for the potential clinical use of ChoK inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bielawska A, Linardic CM and Hannun YA . (1992). FEBS Lett., 307, 211–214.

  • Billah MM and Anthes JC . (1990). Biochem. J., 269, 281–291.

  • Brennan P, Babbage JW, Thomas G and Cantrell D . (1999). Mol. Cell. Biol., 19, 4729–4738.

  • Brindley DN, Abousalham A, Kikuchi Y, Wang CN and Waggoner DW . (1996). Biochem. Cell Biol., 74, 469–476.

  • Cui Z and Houweling M . (2002). Biochim. Biophys. Acta, 1585, 87–96.

  • Cui Z, Houweling M, Chen MH, Record M, Chap H, Vance DE and Terce F . (1996). J. Biol. Chem., 271, 14668–14671.

  • Davies SM, Epand RM, Kraayenhof R and Cornell RB . (2001). Biochemistry, 40, 10522–10531.

  • Dbaibo GS, Pushkavera MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM and Hannun YA . (1995). Proc. Natl. Acad. Sci. USA, 92, 1347–1351.

  • DeLong CJ, Shen YJ, Thomas MJ and Cui Z . (1999). J. Biol. Chem., 274, 29683–29688.

  • Dressler KA, Mathias S and Kolesnick RN . (1992). Science, 255, 1715–1718.

  • Esko JD, Nishijima M and Raetz CR . (1982). Proc. Natl. Acad. Sci. USA, 79, 1698–1702.

  • Esko JD, Wermuth MM and Raetz CR . (1981). J. Biol. Chem., 256, 7388–7393.

  • Fernandez-Tome MC, Speziale EH and Sterin-Speziale NB . (2002). Biochim. Biophys. Acta, 1583, 185–194.

  • Finney RE, Nudelman E, White T, Bursten S, Klein P, Leer LL, Wang N, Waggoner D, Singer JW and Lewis RA . (2000). Cancer Res., 60, 5204–5213.

  • Flores I, Jones DR, Cipres A, Diaz-Flores E, Sanjuan MA and Merida I . (1999). J. Immunol., 163, 708–714.

  • Flores I, Martinez AC, Hannun YA and Merida I . (1998). J. Immunol., 160, 3528–3533.

  • Foster DA and Xu L . (2003). Mol. Cancer Res., 1, 789–800.

  • Golfman LS, Bakovic M and Vance DE . (2001). J. Biol. Chem., 276, 43688–43692.

  • Green DR . (2000). Cell, 102, 1–4.

  • Hannun YA . (1996). Science, 274, 1855–1859.

  • Henneberry AL and McMaster CR . (1999). Biochem. J., 339 (Part 2), 291–298.

  • Hernández-Alcoceba R, Fernández F and Lacal JC . (1999). Cancer Res., 59, 3112–3118.

  • Hernández-Alcoceba R, Saniger L, Campos J, Núñez MC, Khaless F, Gallo MA, Espinosa A and Lacal JC . (1997). Oncogene, 15, 2289–2301.

  • Holmes-McNary MQ, Loy R, Mar MH, Albright CD and Zeisel SH . (1997). Brain Res. Dev. Brain Res., 101, 9–16.

  • Houweling M, Cui Z and Vance DE . (1995). J. Biol. Chem., 270, 16277–16282.

  • Hudson JM, Frade R and Bar-Eli M . (1995). DNA Cell Biol., 14, 759–766.

  • Hundertmark S, Lorenz U, Weitzel HK and Ragosch V . (1999). Horm. Metab. Res., 31, 8–13.

  • Janicke RU, Sprengart ML, Wati MR and Porter AG . (1998). J. Biol. Chem., 273, 9357–9360.

  • Jarvis WD, Fornari Jr FA, Browning JL, Gewirtz DA, Kolesnick RN and Grant S . (1994). J. Biol. Chem., 269, 31685–31692.

  • Jiménez B, del Peso L, Montaner S, Esteve P and Lacal JC . (1995). J. Cell Biochem., 57, 141–149.

  • Kim KH and Carman GM . (1999). J. Biol. Chem., 274, 9531–9538.

  • Kolesnick R . (2002). J. Clin. Invest., 110, 3–8.

  • Kuge O, Nishijima M and Akamatsu Y . (1986). J. Biol. Chem., 261, 5795–5798.

  • Lacal JC . (1997). FEBS Lett., 410, 73–77.

  • Lacal JC . (2001). Int. Drugs, 4, 419–426.

  • Lykidis A and Jackowski S . (2001). Prog. Nucleic Acid Res. Mol. Biol., 65, 361–393.

  • Man AS, Lee E and Choy PC . (1994). Lipids, 29, 15–19.

  • Moolenaar WH, Kruijer W, Tilly BC, Verlaan I, Bierman AJ and de Laat SW . (1986). Nature, 323, 171–173.

  • Nishizuka Y . (1992). Science, 258, 607–614.

  • Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR and Roberts JM . (1994). Nature, 372, 570–573.

  • Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB and Dowhan W . (2001). J. Biol. Chem., 276, 38061–38067.

  • Pelech SL and Vance DE . (1984). Biochim. Biophys. Acta, 779, 217–251.

  • Ramirez de Molina A, Bȧn̄ez-Coronel M, Gutiérrez R, Rodríguez-González A, Megías D, Olmeda D and Lacal JC . Cancer Res. (in press).

  • Rodríguez-González A, Ramírez de Molina A, Fernández F, Ramos MA, Nuñez MC, Campos JM and Lacal JC . (2003). Oncogene, 22, 8803–8812.

  • Ruiz-Ruiz CaAL-R . (2002). Biochem. J., 825–832.

  • Ruvolo PP . (2003). Pharmacol. Res., 47, 383–392.

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM and Clurman BE . (1997). Genes Dev., 11, 1464–1478.

  • Sherr CjaRJM . (1999). Genes Dev., 13, 1501–1512.

  • Sillence DJ and Allan D . (1998). Biochem. J., 331 (Part 1), 251–256.

  • Spiegel S and Kolesnick R . (2002). Leukemia, 16, 1596–1602.

  • Takahashi K, Avissar N, Whitin J and Cohen H . (1987). Arch. Biochem. Biophys., 256, 677–686.

  • Tsukiyama T, Ishida N, Shirane M, Minamishima YA, Hatakeyama S, Kitagawa M and Nakayama K . (2001). J. Immunol., 166, 304–312.

  • Uchida T . (1994). J. Biochem. (Tokyo), 116, 508–518.

  • Uchida T . (1996). Biochim. Biophys. Acta, 1304, 89–104.

  • Ursini F, Maiorino M and Gregolin C . (1985). Biochim. Biophys. Acta, 839, 62–70.

  • Vance DE, Walkey CJ and Cui Z . (1997). Biochim. Biophys. Acta, 1348, 142–150.

  • Wang X . (2001). Genes Dev., 15, 2922–2933.

  • Warden CH and Friedkin M . (1985). J. Biol. Chem., 260, 6006–6011.

  • Weinberg RA . (1995). Cell, 81, 323–330.

  • Weinhold PA, Rounsifer ME, Charles L and Feldman DA . (1989). Biochim. Biophys. Acta, 1006, 299–310.

  • Wieder T, Orfanos CE and Geilen CC . (1998). J. Biol. Chem., 273, 11025–11031.

  • Wieprecht M, Wieder T and Geilen CC . (1994). Biochem. J., 297 (Part 1), 241–247.

  • Wittenberg J and Kornberg A. . (1953). J. Biol. Chem., 202, 431–444.

  • Yen CL, Mar MH and Zeisel SH . (1999). FASEB J., 13, 135–142.

  • Yen CL, Mar MH, Meeker RB, Fernandes A and Zeisel SH . (2001). FASEB J., 15, 1704–1710.

  • Zeisel SH . (1993). FASEB J., 7, 551–557.

  • Zeisel SH, DaCosta K-H, Franklin PD, Alexander EA, Lamont JT, Sheard NF and Beiser A . (1991). FASEB J., 5, 2093–2098.

Download references

Acknowledgements

This work was supported by Grant SAF2001-2042 from MCyT, and by Grants FIS C03-08 and C03-10 from MSyC. ARG was a fellow from Departamento de Educación (Universidades e Investigación del Gobierno Vasco), Grant [Ref. BFI (98.124)]. ARM was a fellow from FIS (Instituto de Salud Carlos III), Grant BEFI 99/9125 (Ref. CPC/CLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Lacal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-González, A., Ramirez de Molina, A., Fernández, F. et al. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 23, 8247–8259 (2004). https://doi.org/10.1038/sj.onc.1208045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208045

Keywords

This article is cited by

Search

Quick links