Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The origin of hematopoietic cell type diversity

Abstract

The hematopoietic system remains robust with regards to extrinsic perturbations, in sharp contrast with the stochastic behavior of hematopoeitic stem cells (HSCs) at the single cell level, suggesting that stability may be achieved within a stem cell system that undergoes constant self-renewal, commitment to differentiation and generates cell type diversification. Converging evidence at the interface of cellular, molecular and numerical studies suggests that diversity is generated by the chaotic dynamics of transcription factor networks within a cell and of the combination of growth factors and cytokines in the environment, both involving cooperation and competition. Current evidence indicates that HSCs are primed for multilineage gene expression. A subtle shift in transcription factor dosage is sufficient to perturb this equilibrium and to drive lineage commitment that involves a resolution of complexity at the molecular level and a transition towards less chaotic behavior. This dynamical instability establishes a state of responsiveness to extrinsic signals. Evolutionary conserved environmental cues that drive pattern formation or migratory behavior during embryonic development operate in the adult to influence the decision between self-renewal and differentiation in HSCs, as exemplified by the role of Notch1, Wnt proteins, BMPs and VEGF. In contrast, a network of cytokines uniquely present in mammalians influences later developmental stages, from progenitors with more restricted potentials (tri-, bi- or unipotent) to mature functional cells. These cytokines have co-opted the ancient Jak-STAT pathway but also appear to trigger lineage-affiliated transcription factors, thus linking environmental signaling to cell fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abkowitz JL, Catlin SN and Guttorp P . (1996). Nat. Med., 2, 190–197.

  • Akashi K, Traver D, Miyamoto T and Weissman IL . (2000). Nature, 404, 193–197.

  • Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH, Dubart-Kupperschmitt A and Fichelson S . (2003). Nat. Med., 9, 1423–1427.

  • Antonchuk J, Sauvageau G and Humphries RK . (2002). Cell, 109, 39–45.

  • Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C, McGuire EA and Gross KW . (1997). EMBO J., 16, 2408–2419.

  • Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D and Murre C . (1997a). Mol. Cell. Biol., 17, 4782–4791.

  • Bain G, Robanus ME, te RH, Feeney AJ, Sheehy A, Schlissel M, Shinton SA, Hardy RR and Murre C . (1997b). Immunity, 6, 145–154.

  • Barndt R, Dai MF and Zhuang Y . (1999). J. Immunol., 163, 3331–3343.

  • Barndt RJ, Dai M and Zhuang Y . (2000). Mol. Cell. Biol., 20, 6677–6685.

  • Becker AJ, McCulloch EA and Till JE . (1963). Nature, 197, 452–454.

  • Ben David Y and Bernstein A . (1991). Cell, 66, 831–834.

  • Benveniste P, Cantin C, Hyam D and Iscove NN . (2003). Nat. Immunol., 4, 708–713.

  • Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE, Karanu FN and Bhatia M . (2001). Nat. Immunol., 2, 172–180.

  • Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L and Dick JE . (1999). J. Exp. Med., 189, 1139–1148.

  • Billia F, Barbara M, McEwen J, Trevisan M and Iscove NN . (2001). Blood, 97, 2257–2268.

  • Brown S, Hu N and Hombria JC . (2001). Curr. Biol., 11, 1700–1705.

  • Bruno L, Hoffmann R, McBlane F, Brown J, Gupta R, Joshi C, Pearson S, Seidl T, Heyworth C and Enver T . (2004). Mol. Cell. Biol., 24, 741–756.

  • Busslinger M, Nutt SL and Rolink AG . (2000). Curr. Opin. Immunol., 12, 151–158.

  • Caceres-Cortes J, Rajotte D, Dumouchel J, Haddad P and Hoang T . (1994). J. Biol. Chem., 269, 12084–12091.

  • Caceres-Cortes JR, Krosl G, Tessier N, Hugo P and Hoang T . (2001). Stem Cells, 19, 59–70.

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM and Scadden DT . (2003). Nature, 425, 841–846.

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S and Smith A . (2003). Cell, 113, 643–655.

  • Chang AN, Cantor AB, Fujiwara Y, Lodish MB, Droho S, Crispino JD and Orkin SH . (2002). Proc. Natl. Acad. Sci. USA, 99, 9237–9242.

  • Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE, Moreau-Gachelin F and Tenen DG . (1995). Oncogene, 11, 1549–1560.

  • Chervinsky DS, Zhao XF, Lam DH, Ellsworth M, Gross KW and Aplan PD . (1999). Mol. Cell. Biol., 19, 5025–5035.

  • Dahl R and Simon MC . (2003). Blood Cells Mol. Dis., 31, 229–233.

  • Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H and Simon MC . (2003). Nat. Immunol., 4, 1029–1036.

  • DeKoter RP and Singh H . (2000). Science, 288, 1439–1441.

  • Dick JE, Magli MC, Huszar D, Phillips RA and Bernstein A . (1985). Cell, 42, 71–79.

  • Furusawa C and Kaneko K . (2000). Phys. Rev. Lett., 84, 6130–6133.

  • Furusawa C and Kaneko K . (2001). J. Theor. Biol., 209, 395–416.

  • Geiger H, Sick S, Bonifer C and Muller AM . (1998). Cell, 93, 1055–1065.

  • Goardon N, Schuh A, Hajar I, Ma X, Jouault H, Dzierzak E, Romeo PH and Maouche-Chretien L . (2002). Blood, 100, 491–500.

  • Gratrix S and Elgin JN . (2004). Phys. Rev. Lett., 92, 014101.

  • Guidos CJ . (2002). Semin. Immunol., 14, 395–404.

  • Halsey TC and Jensen MH . (2004). Nature, 428, 127–128.

  • Harrison DE, Astle CM and Lerner C . (1988). Proc. Natl. Acad. Sci. USA, 85, 822–826.

  • Harrison DA, McCoon PE, Binari R, Gilman M and Perrimon N . (1998). Genes Dev., 12, 3252–3263.

  • Herblot S, Aplan PD and Hoang T . (2002). Mol. Cell. Biol., 22, 886–900.

  • Herblot S, Steff AM, Hugo P, Aplan PD and Hoang T . (2000). Nat. Immunol., 1, 138–144.

  • Herbomel P, Thisse B and Thisse C . (2001). Dev. Biol., 238, 274–288.

  • Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C and Enver T . (1997). Genes Dev., 11, 774–785.

  • Ikawa T, Kawamoto H, Wright LY and Murre C . (2004). Immunity, 20, 349–360.

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA and Lemischka IR . (2002). Science, 298, 601–604.

  • Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH and Spector DL . (2004). Cell, 116, 683–698.

  • Johansson BM and Wiles MV . (1995). Mol. Cell. Biol., 15, 141–151.

  • Jordan CT and Lemischka IR . (1990). Genes Dev., 4, 220–232.

  • Joyner A, Keller G, Phillips RA and Bernstein A . (1983). Nature, 305, 556–558.

  • Just U, Stocking C, Spooncer E, Dexter TM and Ostertag W . (1991). Cell, 64, 1163–1173.

  • Kieran MW, Perkins AC, Orkin SH and Zon LI . (1996). Proc. Natl. Acad. Sci. USA, 93, 9126–9131.

  • King AG, Kondo M, Scherer DC and Weissman IL . (2002). Proc. Natl. Acad. Sci. USA, 99, 4508–4513.

  • Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K and Weissman IL . (2000). Nature, 407, 383–386.

  • Koury MJ and Bondurant MC . (1990). Science, 248, 378–381.

  • Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y and Hirai H . (2003). Immunity, 18, 699–711.

  • Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I, Nottage K and Rabbitts TH . (1996). EMBO J., 15, 1021–1027.

  • Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C, Orkin SH and Hoang T . (2002). Blood, 100, 2430–2440.

  • Lecuyer E and Hoang T . (2004). Exp. Hematol., 32, 11–24.

  • Lemischka IR and Moore KA . (2003). Nature, 425, 778–779.

  • Lin H and Schagat T . (1997). Trends Genet., 13, 33–39.

  • Look AT . (1997). Science, 278, 1059–1064.

  • Lundgren M, Chow CM, Sabbattini P, Georgiou A, Minaee S and Dillon N . (2000). Cell, 103, 733–743.

  • Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G and Hoang T . (2004). Development, 131, 693–702.

  • Massari ME, Grant PA, Pray-Grant MG, Berger SL, Workman JL and Murre C . (1999). Mol. Cell, 4, 63–73.

  • Matsuzaki Y, Kinjo K, Mulligan RC and Okano H . (2004). Immunity, 20, 87–93.

  • Mayani H, Dragowska W and Lansdorp PM . (1993). J. Cell Physiol., 157, 579–586.

  • Metcalf D . (1980). Proc. Natl. Acad. Sci. USA, 77, 5327–5330.

  • Miller CL, Rebel VI, Helgason CD, Lansdorp PM and Eaves CJ . (1997). Blood, 89, 1214–1223.

  • Miller CL, Rebel VI, Lemieux ME, Helgason CD, Lansdorp PM and Eaves CJ . (1996). Exp. Hematol., 24, 185–194.

  • Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL and Akashi K . (2002). Dev. Cell, 3, 137–147.

  • Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L, Moon RT and Bhatia M . (2003). Proc. Natl. Acad. Sci. USA, 100, 3422–3427.

  • Nakahata T, Gross AJ and Ogawa M . (1982). J. Cell Physiol., 113, 455–458.

  • Nakajima H and Ihle JN . (2001). Blood, 98, 897–905.

  • Nelson WJ and Nusse R . (2004). Science, 303, 1483–1487.

  • Niwa H, Burdon T, Chambers I and Smith A . (1998). Genes Dev., 12, 2048–2060.

  • Nutt SL, Heavey B, Rolink AG and Busslinger M . (1999). Nature, 401, 556–562.

  • Ogawa M . (1993). Blood, 81, 2844–2853.

  • Oh IH and Eaves CJ . (2002). Oncogene, 21, 4778–4787.

  • Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S and Kadesch T . (1998). Mol. Cell. Biol., 18, 2230–2239.

  • Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W and Tenen DG . (2001). Nat. Genet., 27, 263–270.

  • Parichy DM, Ransom DG, Paw B, Zon LI and Johnson SL . (2000). Development, 127, 3031–3044.

  • Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC and Lemischka IR . (2000). Science, 288, 1635–1640.

  • Rajotte D, Sadowski HB, Haman A, Gopalbhai K, Meloche S, Liu L, Krystal G and Hoang T . (1996). Blood, 88, 2906–2916.

  • Raya A, Kawakami Y, Rodriguez-Esteban C, Buscher D, Koth CM, Itoh T, Morita M, Raya RM, Dubova I, Bessa JG, de la Pompa JL and Belmonte JC . (2003). Genes Dev., 17, 1213–1218.

  • Rekhtman N, Radparvar F, Evans T and Skoultchi AI . (1999). Genes Dev., 13, 1398–1411.

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R and Weissman IL . (2003). Nature, 423, 409–414.

  • Riley RL, Knowles J and King AM . (2002). Exp. Hematol., 30, 1412–1418.

  • Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G and Salmon P . (1996). Cell, 87, 483–492.

  • Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM and Humphries RK . (1995). Genes Dev., 9, 1753–1765.

  • Sawada S and Littman DR . (1993). Mol. Cell. Biol., 13, 5620–5628.

  • Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA and Trapnell BC . (2001). Immunity, 15, 557–567.

  • Sieweke MH and Graf T . (1998). Curr. Opin. Genet. Dev., 8, 545–551.

  • Socolovsky M, Dusanter-Fourt I and Lodish HF . (1997). J. Biol. Chem., 272, 14009–14012.

  • Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ and Skoda RC . (1999). Proc. Natl. Acad. Sci. USA, 96, 698–702.

  • Strogatz SH . (1994). Nonlinear Dynamics and Chaos. Westview Press: Cambridge, MA, pp. 1–10.

    Google Scholar 

  • Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC and Eaves CJ . (1990). Proc. Natl. Acad. Sci. USA, 87, 8736–8740.

  • Till JE, McCulloch AV and Siminovitch L . (1964). Proc. Natl. Acad. Sci. USA, 51, 29–36.

  • Tremblay M, Herblot S, Lecuyer E and Hoang T . (2003). J. Biol. Chem., 278, 12680–12687.

  • Trinh Xuan Thuan (2001). Chaos and Harmony: Perspectives on Scientific Revolutions of the Twentieth Century. Oxford University Press: New York, pp. 63–123.

  • Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS and Bernstein ID . (2000). Nat. Med., 6, 1278–1281.

  • Voas MG and Rebay I . (2004). Dev. Dyn., 229, 162–175.

  • Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A and Rabbitts TH . (1997). EMBO J., 16, 3145–3157.

  • Wallenfang MR and Matunis E . (2003). Science, 301, 1490–1491.

  • Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D and Robey E . (1997). Cell, 88, 833–843.

  • Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM and Crispino JD . (2002). Nat. Genet., 32, 148–152.

  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates III JR and Nusse R . (2003). Nature, 423, 448–452.

  • Williams DA, Lemischka IR, Nathan DG and Mulligan RC . (1984). Nature, 310, 476–480.

  • Wu H, Liu X, Jaenisch R and Lodish HF . (1995). Cell, 83, 59–67.

  • Xie T and Spradling AC . (1998). Cell, 94, 251–260.

  • Yamashita YM, Jones DL and Fuller MT . (2003). Science, 301, 1547–1550.

  • Yan W, Young AZ, Soares VC, Kelley R, Benezra R and Zhuang Y . (1997). Mol. Cell. Biol., 17, 7317–7327.

  • Ying QL, Nichols J, Chambers I and Smith A . (2003). Cell, 115, 281–292.

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y and Li L . (2003). Nature, 425, 836–841.

  • Zhuang Y, Cheng P and Weintraub H . (1996). Mol. Cell. Biol., 16, 2898–2905.

  • Zhuang Y, Soriano P and Weintraub H . (1994). Cell, 79, 875–884.

  • Zon LI . (2001). Nature Immunol., 2, 142–143.

Download references

Acknowledgements

We thanks all members of the laboratory, colleagues and collaborators for stimulating discussions, and the Canadian Institutes of Health Research, the National Cancer Institute of Canada, the Leukemia Research Fund of Canada, the Cancer Research Society and the Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trang Hoang.

Additional information

Dynamical systems are not analysed in real space but in a multidimensional phase space that depends on the number of variables describing the system. Chaotic systems eventually settle on a structure of lower dimension than their phase space, called the strange attractor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, T. The origin of hematopoietic cell type diversity. Oncogene 23, 7188–7198 (2004). https://doi.org/10.1038/sj.onc.1207937

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207937

Keywords

This article is cited by

Search

Quick links